```
08TP486169.0
            CIRCUIT 4861 69KV TAP
08TP5483 138 CIRCUIT 5483 138KV TAP
08TP566769.0 Tap 5667-6 69.0 kV
08TP676369.0 Tap 6763 69.0 kV
08TP686369.0 TAP 6863 69.0
08TP686469.0 Tap 6864 69.0 kV
08TP7482 138 Tap 7482
08TP966 69.0 Tap 966
08TREATY69.0 Treaty 69kV
08TRENTO 138 Trenton 138 kV
08TRIMBL 345 Trimble 345kV
08TRMNL1 138 TERMINAL 1 138.0
08TRMNL169.0 TERMINAL 1 69.0
08TRMNL2 138
            TERMINAL 2 138.0
08TRMNL269.0 TERMINAL 2 69.0
08TRNTN169.0 TRENTON BUS1 69KV
08TRTLCK69.0 TURTLE CREEK 69.0
08TTCPPE 138 French Lick Texas Eastern (TETC) Pipeline 138kV
08TWYMI2 138 Twenty Mile 2
08TXEHRT69.0 Texas Eastern Trans. Corp. 69 kV
08TXEMNR69.0 TAX E MANOR 69.0
08TYLRVL69.0 TYLERSVILLE 69.0
08UNION 138 UNION 138KV
08UNION 69.0
             Union 69.0 kV
08UNTP 69.0 Union Tap 69.0 kV
08URBANA69.0 Urbana 69kV
08USDOE 138 US Department of Energy
08USPOST69.0 US POST 69.0
08VDSBRG 230 Veedersburg
08VDSBRG69.0 Veedersburg 69kV
08VERONA69.0 Verona 69.0 kV
08VIGO I 138 Vigo Ind. Park 138kV
08VILLA169.0 Villa1 169 kV
08VILLA269.0 VILLA 2 69.0
08VIN 138
            VINCENNES
08VIN J 138
            VINCENNES JUNCTION
08W LAF 138 West Lafayette
08WAB R 138 Wabash River 138 kV
08WAB R 230 Wabash River 230 kV
08WABASH 138 WABASH
08WABASH12.4 Wabash River 12.4kV
08WABASH69.0 Wabash 69
08WABGTJ69.0 Wab G. Tire Jct. 69kV
08WABR1 13.8 Wabash River Generator Unit #1 13.8 kV
08WABR2 13.8 Wabash River Generator Unit #2 13.8 kV
08WABR3 13.8 Wabash River Generator Unit #3 13.8 kV
08WABR4 13.8 Wabash River Generator Unit #4 13.8 kV
08WABR5 13.8 Wabash River Generator Unit #5 13.8 kV
08WABR6 24.0 Wabash River Generator Unit #6 24.0 kV
08WALEBR69.0 Waleboro 69kV
08WALHL169.0 WALNUT HILLS 1 69.0
08WALHL269.0 Walnut Hills 2
08WALTON 230 WALTON
```

```
08WALTON 345
              WALTON
08WALTON69.0
              WALTON
              WARREN 69.0
08WARREN69.0
              Warren Bus 138kV
08WARRN1 138
              Warren Bus 138kV
08WARRN2 138
              Washington Jct
08WASH J 138
              Washington Jct. 69kV
08WASH J69.0
08WASHMU 138
              Washington Municipal
              West Atlas
08WATLAS69.0
08WBSH 169.0
              Wabash 1 69kV
08WBSH 369.0
              Wabash 3 69kV
              Woodlawn
08WDLAWN69.0
08WEBSTE 230
              WEBSTER STREET (KOKOMO)
             WEST END 1 138.0
08WEND1 138
             Warren Bus 138kV
08WEND10 138
             West End 3 138 kV
08WEND3 138
             West End 7
08WEND7 138
              West End 8
08WEND8 138
08WEND9 138
              WEST END 9 138.0
              WESTWOOD
08WESTWD 138
08WESTWD 345
              WESTWOOD
08WHEAT 345
              WHEATLAND (ENRON)
              Whitehall Pike 138kV
08WHITEH 138
08WHITST 345
              WHITESTOWN
              WHITETOWER 69.0
08WHITWR69.0
08WHTFLD 138
              Whitfield
08WHTL E69.0
              Wheatland E. 69kV
              Whitesville
08WHTSVL 230
08WHTV S69.0 Whitesville S. 69kV
08WILDR212.4 Wilder 2 13.2kV
08WILEY1 138 WILEY 1 138.0
08WILEY2 138 Willey 2
08WILM J 138 WILMINGTON JUNCTION
08WIMNTN 138
              Wilmington
08WLDER1 138
               WILDER 1 138.0
             WILDER 1 69.0
08WLDER169.0
08WLDER2 138 Wilder 2
08WLDER269.0 WILDER 2 69.0
08WLDGRJ69.0 Willard Green Jct. 69kV
08WLDRM169.0 WILDER M1 69.0
08WMSVL169.0 WITHAMSVILLE 1 69.0
08WMSVL269.0 Withamsville 2
08WODSDL 345 WOODSDALE 345KV
               Worthington Steel 69kV
08WRTGTN69.0
08WSDLE 69.0
               Woodsdale
               WOODSDALE 1 13.8
08WSDLE113.8
               WOODSDALE 2 13.8
08WSDLE213.8
               WOODSDALE 3 13.8
08WSDLE313.8
               WOODSDALE 4 13.8 kV
08WSDLE413.8
               WOODSDALE 5 13.8
08WSDLE513.8
               WOODSDALE 6 13.8
08WSDLE613.8
08WSDLM113.8
               WOODSDALE M1 13.8
08WSDLM213.8
               WOODSDALE M2 13.8
08WSDLM313.8
               WOODSDALE M3 13.8
               Washington Municipal Junction 69kV
08WSHJCT69.0
08WSTL J69.0
               Westland Jct. 69kV
```

```
Water St. 138kV
08WTR ST 138
             WYSCARVER 1 69.0
08WYSCR169.0
             Wyscarver 2
08WYSCR269.0
             XTEK 69.0
08XTEK 69.0
08ZIMER 345
             ZIMMER 345.0
08ZIMRHP26.0 ZIMMER HP 26.0
08ZIMRLP22.0 ZIMMER LOW PRESSURE 22 KV
09ADKINS 345 ADKINS 345 KV
09AIRWAY 138 AIRWAY 138 KV
09AIRWAY69.0 AIRWAY 69 KV
09ALPHA 138 ALPHA 138 KV
09ALPHA 69.0 Alpha 69 kV (Greene County)
09AMSTRD 138 AMSTERDAM 138 KV
09AMSTRD69.0 AMSTERDAM 69 KV
09ATLNTA 345 ATLANTA 345KV
09ATLNTA69.0 ATLANTA 69 KV
09BATH 138 BATH 138 KV
09BATH 345 BATH 345 KV
09BATH 69.0 BATH 69.0 KV
09BELLBR 138 BELLBROOK 138 KV
09BJ TAP69.0 BLUE JACKET TAP 69 KV
09BLUJK 138 BLUE JACKET 138 KV
09BLUJK 69.0 BLUE JACKET 69 KV
09BURDOX 138 Burdox 138 kv
09CARGIL 138 Cargil 138 kv
09CENTER 138 CENTERVILLE 138 KV
09CLDWTR69.0 COLDWATER 69 KV
09CLINTO 345 CLINTON 345 KV
09CLINTO69.0 CLINTON 69 KV
09CROWN 138 CROWN 138 KV
09CROWNE69.0 CROWN EAST 69 KV
09CROWNW69.0 CROWN WEST 69 KV
09CVNGTN69.0 COVINGTON 69 KV
09DARBY 138 DARBY 138 KV
09DARBY 69.0 DARBY 69 KV
09DELMOR12.0 DELMOR 12 KV
09DELMOR69.0 DELMOR 69 KV
09DIXIET69.0 Dixie Tap 69 kv
09ELDEAN 138 09Eldean 138 kV Sub
09ELDEAN69.0 09Eldean 69 kV Sub
09ESIDNY 138 EAST SIDNEY 138 (COOP DELIVERY POINT)
09GIVENS 138 GIVENS 138 KV (COOP DELIVERY POINT)
09GREENE 138 GREENE 138 KV
09GREENE 345 GREENE 345 KV
09GRNFLD69.0 GREENFIELD 69 KV
09GRNVIL 138 GREENVILLE 138 KV
09GRNVIL69.0 GREENVILLE 69 KV
09HALTER 138 HALTERMAN 138 KV (COOP DELIVERY POINT)
09HEMPST 138 HEMPSTEAD 138 KV
09HEMPST69.0 HEMPSTEAD 69 KV
09JASPER69.0 JASPER 69 KV
09KETTER69.0 KETTERING 69 KV
09KILLEN 345 KILLEN 345 KV
09KINGSC69.0 Kingscreek 69 kv
09KNOLLW 138 KNOLLWOOD 138 KV
09LOGAN 138 LOGAN 138 KV
```

```
09LOGAN 69.0
             LOGAN 69 KV
09MECHAN 138
             MECHANICSBURG 138 KV
09MIAMI 138
            MIAMI 138 KV
09MIAMI 345
            MIAMI 345 KV
09MIAMI 69.0
            MIAMI 69 KV
              Monument 1 138 kV
09MONUM1 138
09MONUM2 138
              Monument 2 138 kV
              MONUMENT 12 KV
09MONUMT12.5
09MORAIN69.0
              MORAINE 69 KV
              MARTINSVILLE 69 KV
09MRTNSV69.0
09NCARLI 138
              NEW CARLISLE 138 KV
              NEW CARLISLE 69 KV
09NCARLI69.0
09NEEDMO 138
              NEEDMORE 138 KV
09NETAP 69.0
              CIRCUIT 6619 TAP
09NORMAN 138
              NORMANDY 138 KV
09NORMAN69.0
              Normandy 69 kv
09NORTHR 138
              NORTHRIDGE 138 KV
090HH
        138
              O.H. HUTCHINGS 138 KV
090HH C.69.0
             O.H. HUTCHINGS CENTRAL 69 KV
             O.H. HUTCHINGS EAST 69 KV
090HH E.69.0
            O.H. HUTCHINGS WEST 69 KV
090HH W.69.0
090VERL2 138 OVERLOOK 2 139
090VERLK69.0 OVERLOOK 69 KV
09PIQUA 69.0 Piqua 3 - 69 kV Sub
09PIQUA469.0
            09Piqua4 - 69 kV Sub
09QUINCY 138
              QUINCY 138 KV
              Rockford Tap 69 kv
09ROCKTP69.0
              ROSSBURG 69.0 KV
09ROSSBG69.0
09SHELBY 138
              SHELBY 138 KV
              SHELBY 345 KV
09SHELBY 345
09SIDNEY 138
              SIDNEY 138 KV
09SIDNEY69.0
              SIDNEY 69 KV
09SPRING 138
              SPRINGCREEK 138 KV
09ST.MRY69.0
              SAINT MARY'S 69 KV
09STATAP 138
              STAUNTON 138 KV TAP
              STAUNTON 138 KV
09STAUNT 138
09STAUNT69.0
              STAUNTON 69 KV
09STUART 138
              STUART 138 KV
              STUART 345 KV
09STUART 345
09SUGRCK 138
              SUGARCREEK 138 KV
              SUGARCREEK 345 KV
09SUGRCK 345
09TAIT 69.0
              TAIT 69 KV
              Tait CT 69kV
09TAITCT69.0
09TAP61069.0 CIRCUIT 6610 69 KV TAP
09TEXTAP69.0
              TEXAS EAST TAP 69
              TREBEIN 138 KV
09TREBEI 138
              TREBEIN 69 KV
09TREBEI69.0
              URBANA 138 KV
09URBANA 138
              URBANA 69 KV
09URBANA69.0
09VANDAL69.0
              VANDALIA 69 KV
              WASHINGTON COURTHOUSE 69 KV
09WASHCH69.0
09WEBSTR 138
              WEBSTER 138 KV
              WEBSTER 69 KV
09WEBSTR69.0
               WILMINGTON 69 KV
09WILMNG69.0
09WMANCH69.0
               WEST MANCHESTER 69 KV
```

```
09WMILTN 138
             WEST MILTON 138 KV
09WMILTN 345
              WEST MILTON 345 KV
09WMILTN69.0
              WEST MILTON 69 KV
09WYAND1 138
              Wyandot 1 138kV
09WYAND2 138
              Wyandot 2 138kV
09YANKEE69.0
              YANKEE 69 KV
10AB GT113.8
             A.B. BROWN GT1
             A.B. BROWN GT1
10AB GT213.8
10ABB G122.0 A.B. BROWN UNIT 1
10ABB G222.0 A.B. BROWN UNIT 2
10ABBRWN 138 A.B. BROWN 138KV BUS
10ANGD13 138 ANGEL MOUNDS 138KV
10ANGD6969.0
            ANGEL MOUNDS 69KV
10BG GT113.8
            BAGS GT1
            BAGS GT2
10BG GT213.8
10CASL13 138
             CASTLE 138KV
10CASL6969.0
             CASTLE 69KV
             CATO TAP 138 KV
10CATO_T 138
10CATO13 138 CATO 138KV
10CATO6969.0 CATO 69KV
10CUL G114.4 CULLEY UNIT 1
10CUL G214.4 CULLEY UNIT 2
10CUL G322.0
              CULLEY UNIT 3
10CULY13 138 FB CULLEY GENERATION 138KV
10CULY6969.0
             FB CULLEY GENERATION 69KV
              DUBOIS 138KV
10DUBS13 138
              DUBOIS 69KV
10DUBS6969.0
10DUFF13 138
              Duff Sub 138kv bus
              ELLIOT 138KV
10ELOT13 138
10ELOT6969.0
             ELLIOT 69KV
10FBUR
       138
             FARM BUREAU COOP 138KV
10GRIMM 138
             GRIMM RD 138KV
10GRND13 138
             GRANDVIEW 138KV
10GRND6969.0
            GRANDVIEW 69KV
10HEID13 138
            HEIDELBACH 138KV
            HEIDELBACH 69KV
10HEID6969.0
             JASPER UNIT 1
10JSP G169.0
             JASPER MAIN 69KV
10JSP_M 69.0
10JSP_N 69.0
             JASPER NORTH 69KV
10LYNV6969.0
              LYNVILLE 69KV
             MT VERNON 138KV
10MTVN13 138
10MTVN6969.0
             MT VERNON 69KV
10NE GT12.5 NORTHEAST GT1&2
10NE13
       138
              NORTH EAST 138KV
10NE69 69.0
              NORTH EAST 69KV
10NEWHRM69.0
              NEW HARMONY 69KV BUS
              Newtonville Sub 138kv bus
10NTVL13 138
10NTVL16 161
              Newtonville Sub 161kv bus
10NTVL6969.0
              Newtonville Sub 69kv bus
       138
              NORTH WEST 138KV
10NW13
10NW69 69.0
              NORTH WEST 69KV
100AKCTY69.0
              OAKLAND CITY 69KV BUS
100HRIVR69.0
              OHIO RIVER 69KV BUS
10PONT13 138
             POINT 138KV
10PONT6969.0
              POINT 69KV
10SIGTAP 138
              SIGECO tap at Petersburg
```

```
10SNAK13 138
               Snake Run Sub
               Snake Run CT1
10SNAKG113.8
               Snake Run CT2
10SNAKG213.8
               TELL CITY 69KV BUS
10TELCTY69.0
10TOYOTA 138
               TOYOTA 138KV BUS
10VICT6969.0
               VICTORY 69KV
10WAR 1515.0
               WARRICK 15KV BUS
               WARRICK UNIT 1
10WAR G115.0
10WAR G215.0
               WARRICK UNIT 2
10WAR G315.0
               WARRICK UNIT 3
10WAR G420.0
               WARRICK UNIT 4
               WARRICK RING 138KV BUS
10WARING 138
10WP_SIG69.0
               WAUPACA 69KV BUS
               tap point to Pleasure Ridge 138 kV bus in Ashbotto
113832 T 138
               tap point to Jeffersontown 138 kV bus in Watterson
113842 T 138
               tap point to Plainview 138 kV bus in Beargrass-Mid
113870 T 138
               tap between Shelbyville, Aiken, and 6686 tap
116658 T69.0
               tap point to Freys Hill 69 kV bus in Harrods Creek
116659 T69.0
               tap point to Mt Washington EKPC substation
116662 T69.0
116686 T69.0
               tap point to Crestwood 69 kV bus in Centerfield-WH
               Adams 138 kV bus
11ADAMS 138
11ADAMS 34.5
              Adams 34.5 kV bus
               Adams 69 kV bus
11ADAMS 69.0
               Aiken 69 kV bus
11AIKEN 69.0
               Alcalde 161 kV bus
11ALCALD 161
               Alcalde 345 kV bus
11ALCALD 345
11ALEXAN69.0
               Alexander 69 kV
11ALGNQU 138
               Algonquin 138 kV bus
               Algonquin 69 kV bus
11ALGNQU69.0
11AMERI 138
               American Avenue 138 kV bus
11AMERI 69.0
               American Avenue 69 kV bus
               Andalex 69 kV
11ANDALE69.0
11ANDO T69.0
               Andover 69 kV bus
               Andover 34.5 kV bus
11ANDOVE34.5
               Andover 69 kV bus
11ANDOVE69.0
11AOSM T69.0
               tap point to AO Smith substation
               AO Smith 69 kV bus
11AOSMIT69.0
               Appliance Park 138 kV bus
11APPLPA 138
               Appolo Fuel 69 kV
11APPOL 69.0
               Arnold 161 kV bus
11ARNOLD 161
              Arnold 69 kV bus
11ARNOLD69.0
             Artemus 161 kV
11ARTE T 161
              Artemus 161 kV bus
11ARTEMU 161
               Artemus 69 kV bus
11ARTEMU69.0
               Ashland Avenue 69 kV
11ASHAVE69.0
               Ashbottom 138 kV bus
11ASHBOT 138
11ASHBOT69.0
               Ashbottom 69 kV bus
11ASHBY 138
               Ashby 138 kV bus
11ASHOIL69.0
              Ashland Oil 69 kV
              tap point to Avon substation
11AVON 169.0
11AVON 269.0
              tap point to Avon substation
11BARBOU69.0
               Barbourville City 69 kV
               Bardstown City 69 kV bus
11BARD C69.0
               Bardstown Industrial 69 kV bus
11BARD I69.0
               Bardstown 138 kV bus
11BARDST 138
```

Bardstown 69 kV bus

11BARDST69.0

```
Bardwell 69 kV
11BARDWE69.0
              Barlow 69 kV bus
11BARLOW69.0
11BEARGR 138
              Beargrass B95138 kV bus
              Beargrass 69 kV bus
11BEARGR69.0
              Beattyville 69 kV bus
11BEATTY69.0
11BEDFOR69.0
              Bedford EKPC 69 kV bus
              Bell & Zoller 69 kV
11BELL&Z69.0
11BELT L69.0
              Belt Line 69 kV
              Benham 69 kV
11BENHAM69.0
              tap to Berea 69 kV
11BEREA 69.0
              tap point to EKPC West Berea-Three Links Jct 69 kV
11BEREAE69.0
              Bluegrass Ordnance 69 kV bus
11BG ORD69.0
             Bluegrass Parkway 138 kV bus
11BG PKW 138
             Bimble 69 kV bus
11BIMBLE69.0
11BISHOP69.0 Bishop 69 kV
11BKR LN 138 Baker Lane 138 kV bus
             Black Mountain 69 kV
11BLCKMT69.0
11BLCKWD69.0
             Blackwood 69 kV
11BLED T69.0
             tap point to Bledsoe substation
              Blue Lick 138 kV bus
11BLUE L 138
              Blue Lick 161 kV bus
11BLUE L 161
               Blue Lick 345 kV bus
11BLUE L 345
               Blue Lick 69 kV bus
11BLULCK69.0
11BNDS M69.0
               Bonds Mill 69 kV bus
              Bond 69 kV bus
11BOND 69.0
              Bonnieville 138 kV bus
11BONNIE 138
              Bonnieville 69 kV bus
11BONNIE69.0
              Boone Avenue 69 kV bus
11BOONE 69.0
              Boonesboro North 69 kV bus
11BOONSB69.0
11BOYLE 69.0
              Boyle County 69 kV bus
              Breckenridge 138 kV bus
11BRCKNG 138
              Breckenridge 69 kV bus
11BRCKNG69.0
             Bridgeport EKPC 69 kV
11BRDGEK69.0
             tap to Bridgeport HE 69 kV
11BRDGHE 138
11BRGPMP69.0 Beargrass Pumping 69 kV
11BROMLY69.0 Bromley 69 kV bus
11BRUSH 69.0 Brush Creek 69 kV
11BRWN N 138 Brown North 138 kV bus
11BRWN N 345 Brown North 345 kV bus
11BRWN P 138 Brown Plant 138 kV bus
             Brown Combustion Turbine 138 kV bus
11BRWNCT 138
               tap point to Brown Combustion Turbine 138 kV bus i
11BRWNT1 138
               tap point to Brown Combustion Turbine 138 kV bus i
11BRWNT2 138
11BUCHAN69.0
               Buchanan 69 kV
               Buckner Dynegy 345 kV bus
11BUCKNR 345
               Buena Vista 69 kV
11BUENA 69.0
               tap point to Bush EKPC substation
11BUSH J69.0
11BUTLER 138
               Butler 138 kV bus
11CALLOW69.0 Calloway 69 kV
11CAMARG69.0
              Camargo 69 kV bus
11CAMPGR 138
               Campground 138 kV bus
               Canal 138 kV bus
 11CANAL 138
               Canal 69 kV bus
 11CANAL 69.0
               Cane Run 69 kV bus
 11CANERN69.0
               Carlisle 69 kV bus
 11CARLIS69.0
               tap point to Carntown 138 kV bus in Ghent-Kenton 1
 11CARN T 138
```

```
11CARNTN 138
             Carntown 138 kV
11CARNTN69.0
             Carntown 69 kV bus
11CARON 69.0
              Caron 69 kV
11CARPEN69.0
              Carpenter EKPC 69 kV
              Carrollton 138 kV bus
11CARROL 138
              Carrollton 69 kV bus
11CARROL69.0
11CAVE R69.0
              Cave Run EKPC 69 kV
11CEN CI69.0
              Central City South 69 kV
11CENTRF 138
              Centerfield 138 kV bus
              Centerfield 69 kV #1 bus
11CENTRF69.0
              Cerro-Salem 69 kV
11CERRO-69.0
11CHRIST69.0
              Christian 69 kV
              Clark County 138 kV bus
11CLARK 138
11CLARK 69.0
              Clark County 69 kV bus
              Claxton 34.5 kV bus
11CLAXT034.5
              Clay 69 kV bus
11CLAY 69.0
               tap point to Clay Village EKPC 69 kV bus in Shelby
11CLAY V69.0
               Clays Mill 138 kV
11CLAYSM 138
11CLIFT069.0
               Clifton 69 kV bus
11CLVRPR 138
               Cloverport 138 kV bus
              tap point to Central Manufacturing substation
11CMC TA69.0
11CMP BR69.0
              Camp Breckenridge 69 kV
11CMPBBG69.0
               Campbellsburg EKPC 69 kV
               Campbellsville 2 69 kV
11CMPBV269.0
               Campground EKPC 69 kV
11CMPGEK69.0
               Cane Run Unit 6 138 kV bus
11CN RN6 138
               Cane Run Switching Station 138 kV bus
11CNE RN 138
               Coastal Coal 69 kV bus
11COASTA69.0
              Collins 69 kV bus
11COLLIN69.0
              Corbin East #1 69 kV
11CORBIN69.0
11CORHAR69.0 Corhart 69 kV
11CORY T 161 tap point to Corydon 161 kV bus in Morganfield-Gre
               Corydon 161 kV bus
11CORYDO 161
               Corydon 69 kV bus
11CORYD069.0
               Crab Orchard 69 kV
11CRAB 069.0
11CRESCE69.0 Crescent 69 kV
11CRITTE 161
               Crittenden 161 kV bus
               Crittenden 69 kV bus
11CRITTE69.0
11CRSTW069.0
               Crestwood 69 kV
11CUMB F69.0
              Cumberland Falls EKPC 69 kV
11CUMBER69.0
              Cumberland 69 kV
             Cynthiana South 69 kV
11CYNT S69.0
             Cynthiana Switching Station 69 kV bus
11CYNTH 69.0
             Dahlia 69 kV
11DAHLIA69.0
             Danville #1 69 kV
11DANV 169.0
              Danville North 138 kV bus
11DANVIL 138
              Danville North 69 kV bus
11DANVIL69.0
              Dark Hollow 69 kV
11DARKH069.0
               Dawson Springs 421 34.5 kV bus
11DAWSON34.5
               tap to Dayhoit 69 kV
11DAYHOI69.0
11DAYS B69.0
               Days Branch 69 kV
               Dayton Walther 138 kV bus
11DAY-WA 138
               Del Park 69 kV
11DEL PA69.0
               Delaplain 69 kV bus
11DELAP 69.0
               Delvinta 161 kV bus
11DELVIN 161
               Dix Dam 69 kV bus
11DIXDAM69.0
```

```
11DIXIE 138
              Dixie 138 kV bus
11DIXON 69.0
            Dixon 69 kV
            Dorchester 161 kV bus
11DORCHE 161
11DORCHE34.5 Dorchester 34.5 kV bus
11DORCHE69.0 Dorchester 69 kV bus
11DW CRN 138 Dow Corning West 138 kV bus
11DWINA 69.0 Dwina 69 kV bus
11E BERN69.0 East Bernstadt 69 kV bus
11E DIAM69.0 East Diamond 69 kV
11EARL N 161 Earlington North 161 kV bus
            Earlington North 69 kV bus
11EARL N69.0
            Earlington 69 kV bus
11EARLIN69.0
11EASTLA69.0 Eastland 69 kV
11EASTVW69.0 Eastview 69 kV bus
11EASTW069.0 Eastwood 69 kV bus
11ECHOLS69.0 Echols 69 kV
11EDDY P69.0 Eddyville Prison 69 kV
11EDDYVI69.0 Eddyville 69 kV
11ELIHU 161 Elihu 161 kV bus
11ELIHU 69.0 Elihu 69 kV bus
11EMANUE69.0 Emanuel 69 kV
            Eminence 69 kV bus
11EMINEN69.0
11ESSERV69.0 Esserville 69 kV
11ETHEL 138 Ethel 138 kV bus
11ETHEL 69.0 Ethel 69 kV bus
11ETOWN 138 Elizabethtown 138 kV bus
11ETOWN 69.0 Elizabethtown 69 kV bus
11ETWN 269.0 tap to E'town 2 69 kV
11ETWN 469.0 E'town 4 69 kV
11EVAR T69.0 tap to Evarts 69 kV
11EVARTS69.0 Evarts 69 kV bus
11EWINGT69.0 Ewington 69 kV bus
11FAIRFL69.0 Fairfield 69 kV
11FAIRMN69.0 Fairmount 69 kV bus
11FARLEY 161 Farley 161 kV bus
11FARLEY69.0 Farley 69 kV bus
11FARM T 138 tap point to Farmers 138 kV bus in Rodburn-Spencer
11FARMER 138 Farmers 138 kV bus
11FARMER69.0 Farmers 69 kV bus
11FARNSL69.0 Farnsley 69 kV bus
11FAWK T 138 tap between Fawkes (EKPC), Fawkes, and Lake Reba T
11FAWKES 138 Fawkes 138 kV bus
11FAWKES69.0 Fawkes 69 kV bus
             Ferguson South 69 kV bus
11FERG S69.0
             Fern Valley 138 kV bus
11FERNVL 138
11FERNVL69.0 Fern Valley 69 kV bus
11FFRT 34.5 Frankfort 34.5 kV bus
11FFRT 169.0 Frankfort 69 kV bus
11FFRT 269.0 Frankfort 2 69 kV
11FFRT E 138 Frankfort East 138 kV bus
11FFRT E69.0 Frankfort East 69 kV bus
11FINCHV69.0 Finchville 69 kV bus
11FL TL 69.0 Flordia Tile 69 kV
11FLEMIN 138
              Flemingsburg 138 kV bus
11FLOYD 69.0
              Floyd 69 kV
11FMC
        69.0
              FMC 69 kV
```

```
11FOGG P69.0
             tap to Fogg Pike EKPC 69 kV
11FORD
        138
             Ford 138 kV
11FORD 69.0
             Ford 69 kV
11FOREST69.0
             Forester Creek 69 kV
11FOUR M69.0
             Four Mile 69 kV
11FREDON69.0
              Fredonia Quarry 69 kV
11FREYSH69.0
             Freys Hill 69 kV
11GARRD 69.0
             Garrard CT tie 69 kV
11GEORGT69.0
              Georgetown 69 kV
11GHENT 138
              Ghent 138 kV bus
11GHENT 345
              Ghent 345 kV bus
11GIBRLT69.0
             tap to Gibralter Mine 69 kV
11GODDRD 138
              Goddard 138 kV bus
11GORGE 69.0
              Gorge 69 kV
11GR RV 161
              Green River 161 kV bus
11GR RVR 138
              Green River 138 kV bus
11GR RVR69.0
              Green River 69 kV bus
11GR STL 138
             Green River Steel 138 kV bus
11GR STL69.0
             Green River Steel 69 kV bus
11GRADE 138 Grade Lane 138 kV bus
11GRADY 69.0 Grady 69 kV bus
11GRAHVL 161 Grahamville 161 kV bus
11GRAHVL69.0
             Grahamville 69 kV
             Greensburg 69 kV bus
11GRBURG69.0
11GREASY69.0
              Greasy Creek EKPC 69 kV bus
11GRNV W69.0
              tap to Greenville West 69 kV
11GRPLAZ69.0
              Green River Plaza EKPC 69 kV bus
              Haefling 138 kV
11HAEFLN 138
11HAEFLN69.0
              Haefling 69 kV bus
11HALEY 69.0
              Haley 69 kV
             Hamblin 69 kV
11HAMBLN69.0
11HANCOC 138
             Hancock 138 kV bus
11HANCOC69.0
              Hancock 69 kV bus
11HAR55769.0
             Harlan 557 69 kV
11HARDBG 138
             Hardinsburg 138 kV bus
11HARDN 138
              Hardin County 138 kV bus
11HARDN 345
              Hardin County 345 kV bus
11HARDN 69.0
              Hardin County 69 kV bus
              Harlan "Y" 161 KV bus
11HARLAN 161
11HARLAN69.0
              Harlan "Y" 69 kV bus
11HARR T69.0
             tap to Harrodsburg North 69 kV
             Harrodsburg 69 kV
11HARRDS69.0
11HIGB 269.0
             Higby Mill 2 69 kV
11HIGB A69.0
              Higby Mill 69 kV A bus
11HIGB B69.0
              Higby Mill 69 kV B bus
              Higby Mill 138 kV bus
11HIGBY 138
11HIGHLA69.0
              Highland 69 kV
11HILLSI69.0
              Hillside 69 kV bus
11HINKLE69.0
              Hinkle EKPC 69 kV
11HLCRST69.0
              Hillcrest 69 kV bus
11HODGEN69.0
              Hodgenville 69 kV bus
11HOPEWL69.0
              Hopewell 69 kV bus
11HOWRD 161
              Howards Branch 161 kV bus
11HRDSTA69.0
              tap to Pleasant View Mine 69 kV
11HRDSTB69.0
              Hardesty B 69 kV
              Harmony Landing 69 kV
11HRMNYL69.0
```

```
11HRRDSC69.0
              Harrods Creek 69 kV
              Hurstbourne 138 kV bus
11HRSTBR 138
11HUGHS 69.0
              Hughes Lane 69 kV bus
              tap point to Hunters Bottom substation
11HUNT T69.0
      69.0
              IBM 69 kV
11TBM
              IBM North 138 kV bus
11IBM N 138
             Imboden 161 kV bus
11IMBODE 161
11IMBODE69.0
            Imboden 69 kV bus
             Indian Hill 69 kV bus
11INDIAN69.0
11JEFFJC 138
              tap point to Jeffersonville CIN 138 kV bus in Nort
              Jericho EKPC 69 kV
11JERICH69.0
              Joyland 69 kV
11JOYLAN69.0
11KEN AM69.0
              Ken America 69 kV
11KENTEN69.0
              Kentenia 69 kV bus
              Kenton 138 kV bus
11KENTON 138
              Kenton 69 kV bus
11KENTON69.0
11KENWOO69.0 Kenwood 69 kV
             Keokee 69 kV
11KEOKEE69.0
11KEOKTV69.0 Keokee TVA 69 kV
11KNOB C 138
              Knob Creek 138 kV bus
11KOSMOS 138
              Kosmos Cement 138 kV bus
11KU PK 69.0 KU Park Plant 69 kV bus
             Kuhlman 69 kV
11KUHLMA69.0
11KY DAM69.0
              Kentucky Dam TVA 69 kV bus
11KYSTH069.0 Kentucky State Hospital 69 kV
             La Grange East 69 kV bus
11LAGR E69.0
11LAGR P69.0 La Grange Penal 69 kV bus
11LANC 269.0 Lancaster 2 69 kV
11LANCST69.0 Lancaster 69 kV
11LANSDW 138 Lansdowne 138 kV bus
11LANSDW69.0 Lansdowne 69 kV bus
11LAWREN69.0 tap to Lawrence 69 kV
              tap point to Lebanon Industrial substation
11LE I T69.0
11LEBN C69.0
              Lebanon City 69 kV bus
              Lebanon West 138 kV
11LEBN W 138
             Lebanon 138 kV
11LEBNON 138
11LEBNON69.0 Lebanon 69 kV
11LEIT C69.0 Leitchfield City 69 kV bus
11LEITCH 138 Leitchfield 138 kV bus
11LEITCH69.0 Leitchfield 69 kV bus
11LEX PL69.0 Lexington Plant 69 kV bus
11LIBRT 69.0 Liberty Road 69 kV
11LIV C 161 Livingston County 161 kV bus
             Lake Reba 138 kV bus
11LK REB 138
             Lake Reba 69 kV bus
11LK REB69.0
11LKSHOR69.0
              tap to Lakeshore 69 kV
              Lockport 138 kV bus
11LOCKPO 138
             tap to Locust 69 kV
11LOCUST69.0
11LONDON69.0
               London 69 kV bus
             Long Run EKPC 69 kV
11LONG R69.0
               Loudon Avenue 69 kV A bus
11LOUD A69.0
11LOUD B69.0
              Loudon Avenue 69 kV B bus
11LOUDON 138
              Loudon Avenue 138 kV bus
11LR TAP 138
               Lake Reba Tap 138 kV bus
11LR TAP 161
               Lake Reba Tap 161 kV bus
```

11LWRNCB69.0

Lawrenceburg 69 kV

```
Lynch 69 kV bus
11LYNCH 69.0
              Lyndon South 69 kV bus
11LYND S69.0
              Lyndon 138 kV bus
11LYNDON 138
              Lyndon 69 kV bus
11LYNDON69.0
11MADIS069.0
              Madision 69 kV bus
              Magazine 138 kV bus
11MAGAZI 138
              Magazine 69 Kv
11MAGAZI69.0
              Manchester South 69 kV bus
11MANC S69.0
              Manchester 69 kV bus
11MANCHE69.0
              Mannington 34.5 kV bus
11MANNIN34.5
              Manslick 138 kV bus
11MANSLI 138
              Marion South 69 kV
11MARI S69.0
11MARION 138
              Marion County 138 kV bus
11MARION69.0
              Marion 69 kV bus
             tap to Madisonville South 69 kV
11MDVL S69.0
             tap to Madisonville GE 69 kV
11MDVLGE69.0
             UK Medical Center 69 kV bus
11MED CN69.0
             tap point to Danville North 138 kV bus in Brown Pl
11MERCR 138
11METL+T69.0
             Metal & Thermit 69 kV
             Middlesboro 69 kV bus
11MIDDLS69.0
             Middletown 138 kV bus
11MIDDLT 138
11MIDDLT 345
             Middletown 345 kV bus
              Middletown 69 kV bus
11MIDDLT69.0
               Midway 138 kV bus
11MIDWAY 138
               Mill Creek 138 Kv
11MIL CK 138
               Mill Creek 345 kV bus
11MIL CK 345
               Mill Creek 881 69 kV
11MIL88169.0
              Milburn TVA 69 kV
11MILBUR69.0
               Mile Lane EKPC 69 kV
11MILE L69.0
              Millersburg 69 kV bus
11MILLRS69.0
11MILLW069.0
              Mill Wood 69 kV
11MILTON69.0 Milton EKPC 69 kV bus
11MORG 469.0 Morganfield 610 69 kV
               Morganfield 161 kV bus
11MORGNF 161
              Morganfield 69 kV bus
11MORGNF69.0
11MORH E69.0 Morehead East 69 kV
11MORH W69.0 Morehead West 69 kV
11MORTON69.0 Mortons Gap 69 kV bus
11MRRSFR69.0 Morris Forman 69 kV
11MT TBR69.0 Mount Tabor 69 kV
11MUD LA 138 Mud Lane 138 kV bus
11MUD LA69.0 Mud Lane 69 kV bus
11MUHLNB69.0
             Muhlenberg Prison 69 kV
               Mid-Valley Simpsonville 69 kV
11M-V SI69.0
               Mount Victory EKPC 69 kV
11MVEK J69.0
               North Corbin 69 kV
11N.CORB69.0
11N.MADS69.0
               North Madison EKPC 69 Kv
               Nachand 69 kV
11NACHAN69.0
               North American Stainless 138 kV bus
         138
11NAS
               Nebo 69 kV bus
11NEBO 69.0
               Nelson County 138 kV bus
11NELSON 138
              Nelson 69 kV
11NELSON69.0
               New Haven 69 kV bus
11NEWHAV69.0
               Nicholasville City #7 69 kV
11NICH 769.0
11NORTHS 138
               Northside 138 kV bus
11NORTHS 345
               Northside 345 kV bus
```

```
Norton East 69 kV
11NORTON69.0
              Oak Hill 34.5 kV bus
110AK HI34.5
110AK HI69.0
              Oak Hill 69 kV bus
              tap point to Owen County 138 kV bus in Ghent-Scott
110C TAP 138
110FFI T69.0
              tap to Office EKPC EKPC substation
              Office EKPC EKPC 69 kV bus
110FFICE69.0
              Ohio County 138 kV bus
110HIO C 138
110HIO C69.0
              Ohio County 69 kV bus
              Okolona 138 kV bus
110KOLON 138
110KONIT69.0
              Okonite 69 kV bus
              Olin Corporation 69 kV bus
110LINC069.0
              Owensboro Municipal Utilities 69 kV bus
110MU
       69.0
110SAKA 69.0
              Osaka East 69 kV bus
110VER S69.0
             tap to Overland South 69 kV
110WEN C 138
             Owen County 138 kV bus
110XMOOR69.0 Oxmoor 69 kV bus
11P WEST 138 Paddys West 138 kV bus
11P&G
       69.0 Proctor & Gamble 69 kV
11PADDYR 138 Paddys Run 138 kV bus
11PADDYS 161 Paddys Run 161 kV bus
11PADDYS69.0 Paddys Run 69 kV bus
             Paddys West 345 kV bus
11PADDYW 345
             Paint Lick 69 kV bus
11PAINT 69.0
              Paris 819 69 kV
11PAR 1269.0
              Paris City (2) 69 kV
11PAR CI69.0
             Paris 688 69 kV
11PARI 469.0
             Paris 21 69 kV
11PARIS 69.0
11PBODYC69.0 Peabody Camp 1 69 kV
11PBODYW69.0 Peabody Water Pump 69 kV
11PENALF69.0 La Grange Penal 69 kV
11PEP PK34.5 Pepper Pike 34.5 kV bus
11PHILIP69.0
              Vaksdahl Avenue 69 kV bus
              Picadome 69 Kv
11PICAD069.0
              Pineville 722 69 kV
11PIN72269.0
              Pine Mountain EKPC 69 kV bus
11PINE M69.0
             Pineville 161 kV bus
11PINEVI 161
             Pineville 345 kV bus
11PINEVI 345
11PINEVI69.0 Pineville 69 kV bus
11PINEVL 161 Pineville 161 kV bus
11PINEVL 500 Pineville 500 kV bus
             Pisgah 138 kV bus
11PISGAH 138
11PISGAH69.0 Pisgah 69 kV bus
             Pittsburg 69 kV bus
11PITTSB69.0
             Plainview 138 kV bus
11PLAINV 138
               Pleasure Ridge 138 kV bus
11PLSRDG 138
               Pocket North 161 kV bus
11POCK N 161
11POCKET 161
               Pocket 161 kV bus
11POCKET 500 Pocket North 500 kV bus
11POCKET69.0 Pocket 69 kV bus
11POND C 138 Pond Creek 138 kV bus
11POP RI69.0 Poplar Ridge 69 kV
11POWDER69.0 Powderly 69 kV
11POWEL 69.0 Powell Mountain Coal 69 kV
11PR 3 M99.0
              interior connection in Paddys Run #3 three winding
11PRINCE34.5
               Princeton 34.5 kV bus
11PRINCE69.0
              Princeton 69 kV bus
```

```
tap to Parkers Mill 69 kV
11PRKR M69.0
              Parker Seal 69 kV
11PRKRSE69.0
11PRUN2A14.0
              Paddys Run 14 kV 2A bus
              Paddys Run 14 kV 2B bus
11PRUN2B14.0
11PUCKET69.0
              Puckett Creek 69 kV
              Pyro #2 69 kV
11PYRO 269.0
11RADCL 69.0
              Radcliff South 69 kV
11REYNOL 138
              Reynolds 138 kV bus
              Rice Station EKPC 69 kV
11RICE T69.0
11RICH S69.0
              Richmond South 69 kV
11RICHM069.0 Richmond 69 kV
11RIVR Q 161
              River Queen 161 kV bus
              River Queen 69 kV bus
11RIVR Q69.0
11RIVRVI69.0
               Riverview 69 kV
               Rockhold EKPC 69 kV
11ROCKH069.0
               Rockwell 69 Kv
11ROCKWE69.0
               Rocky Branch 69 kV bus
11ROCKY 69.0
11RODBRN 138
               Rodburn 138 kV bus
11RODBRN69.0
               Rodburn 69 kV bus
11ROGERS 138
               Rogersville 138 kV bus
11ROGERS69.0
              Rogersville 69 kV bus
              tap point to River Queen 161 kV bus in Earlington
11RQ TAP 161
             tap point to River Queen 69 kV bus in Walker-Green
11RQ TAP69.0
              River City Shredding 69 kV
11RVRCTY69.0
              tap to Spencer Chemical 69 kV
11S CHEM69.0
              South Paducah 161 kV bus
11S PADU 161
              South Paducah 69 kV bus
11S PADU69.0
               South Elkhorn EKPC 69 Kv
11S.ELKH69.0
11SALT L69.0
               Salt Lick 69 kV
               Salvisa 69 kV
11SALVIS69.0
             Sardis 69 kV bus
11SARDIS69.0
             Smith Brothers Mines 34.5 kV bus
11SBMINE34.5
11SC TAP69.0 tap point to Shelby County 69 kV bus in Finchville
11SCOTST69.0 tap to Scott Street 69 kV
11SCOTT 138
               Scott County 138 kV bus
11SCOTT 69.0
               Scott County 69 kV bus
11SEMINO69.0
               Seminole 69 kV bus
               Sewellton 69 kV bus
11SEWELL69.0
11SHADRA 138
               Shadrack 138 kV bus
11SHAKRT69.0
               Shakertown 69 kV
               Sharkey EKPC 69 kV bus
11SHARKE 138
               Sharon 69 kV bus
11SHARON69.0
               Shavers Chapel 69 kV
11SHAVR 69.0
               Shively 69 kV bus
11SHIVEL69.0
11SHLB E69.0
               Shelbyville East 69 kV
               Shelbyville South 69 Kv
11SHLB S69.0
               Shelbyville 69 kV bus
11SHLBYV69.0
               tap point to Leitchfield 138 kV bus in Ohio County
11SHREWS 138
               Simpsonville 69 kV
11SIMPSM69.0
11SKYLIG69.0
               Skylight 69 kV bus
               Smith OMU 138 kV bus
11SMITH 138
11SMITH 345
               Smith 345 OMU kV bus
               Smyrna 69 kV bus
11SMYRNA69.0
               Sonora 69 Kv
11SONORA69.0
                Southville Station #6 EKPC 69 kV
11SOUTHV69.0
                Spencer Road 138 kV bus
11SPENC 138
```

```
11SPENC 69.0
               Spencer Road 69 kV bus
11SPNDLT69.0
               tap to Spindletop 69 kV
11SPRNGF69.0
               Springfield 69 kV bus
11SSET S69.0
               Somerset South 69 kV bus
11ST CHA69.0
               Saint Charles 69 Kv
11STEWAR69.0
               Stewart 69 kV
11STHPRK69.0
               South Park 69 Kv
11STINK 69.0
               Stinking Creek 69 Kv
11STONWL69.0
               Stonewall 69 Kv
11STPAUL69.0
               St Paul 69 kV bus
11STRGHT69.0
               Straight Creek 69 Kv
11STRNGT69.0
               Stringtown 69 Kv
11SUNOCO69.0
               Sunoco 69 Kv
11SUNST 69.0
               Sunset Mines 69 kV
               Sweet Hollow 69 kV bus
11SWEETH69.0
11SYLVAN69.0
               Sylvania 69 kV
11TAYLOR69.0
               Taylor 69 kV bus
11TAYLRC69.0
               Taylor County 69 kV bus
11TAYLRV69.0
               Taylorsville 69 kV
11TIPT 169.0
              Tip Top #1 69 kV
11TIPT 269.0
               Tip Top #2 69 kV
11TIPT M99.0
               Tip Tap transformer mid-point
11TIPTOP 138
               Tip Top 138 kV bus
               Tip Top 34.5 kV bus
11TIPTOP34.5
               Toms Creek 69 kV bus
11TOMS C69.0
11TOYT N 138
               Toyota North 138 kV bus
               Toyota South 138 kV bus
11TOYT S 138
11TREE T69.0
               tap point to Tree Haven EKPC substation
11TRIMBL 138
               Trimble County 138 kV bus
               Trimble County 345 kV bus
11TRIMBL 345
11TUN H 69.0
               Tunnel Hill 69 Kv
11TYRONE 138
              Tyrone 138 kV bus
               Tyrone 69 kV bus
11TYRONE69.0
11US STE69.0
               Corbin US Steel 69 kV
11V METR69.0
               Van Meter EKPC 69 kV bus
11VERDA 69.0
               Verda 69 kV
11VILEY 138
               Viley Road 138 kV bus
11VSAI W69.0
               Versailles West 69 kV
11VSAILL69.0
               Versailles 69 kV
11W CLIF 138
               West Cliff 138 kV bus
11W CLIF69.0
              West Cliff 69 kV bus
11W FRNK 138
              West Frankfort 138 kV bus
11W FRNK 345
               West Frankfort 345 kV bus
11W FRNK69.0
               West Frankfort 69 kV bus
11W HI T69.0
              tap to West High Street 69 kV
11W IRVI 161
               West Irvine 161 kV bus
               West Irvine 69 kV bus
11W IRVI69.0
11W LEXN 138
               West Lexington 138 kV bus
11W LEXN 345
               Wext Lexington 345 kV bus
11WACO 69.0
               Waco 69 kV
               Walker 161 kV bus
11WALKER 161
               Walker 69 kV bus
11WALKER69.0
11WARREN69.0
               tap to Warren TVA 69 kV
11WATRSD 138
               Waterside 138 kV bus
               Watterson 138 kV bus
11WATTRS 138
               Watterson 69 kV bus
11WATTRS69.0
```

```
West Cliff 69 kV bus in Brown Plant 138 kV to Dix
11WC-DD 69.0
11WDLWN 69.0
              Woodlawn 69 Kv
11WEBC 369.0
              Webcoal #3 69 kV
11WEBC 469.0
              Webcoal #4 69 kV
              Wedonia 138 kV bus
11WEDONI 138
              WHAS 69 kV
11WHAS 69.0
11WHITE069.0
              White Oak 69 kV bus
              tap point to Wheatcroft 69 kV bus in Morganfield-N
11WHTC T69.0
11WHTCRO69.0
              Wheatcroft 69 kV
11WI TAP 161
              tap point to West Irvine 138 kV bus in Lake Reba T
              Wickliffe City 69 kV
11WICK C69.0
11WICKLI 161
              Wickliffe 161 kV bus
              Wickliffe 69 kV bus
11WICKLI69.0
11WIL D169.0
              Wilson Downing #1 69 kV
              Wilson Downing #2 69 Kv
11WIL D269.0
              Wilmore 69 kV
11WILMOR69.0
              Winchester South 69 Kv
11WINC S69.0
              Winchester 69 kV bus
11WINCHS69.0
11WOFFOR69.0
             Wofford 69 kV bus
11ZION 69.0
              Zion 69 kV
14BRYAN5 161
              Bryan Road
14COLE 5 161
              Coleman 161 kv
14COLE 7 345
              Coleman EHV 345 kv
              Daviess Co. 161 kv
14DAVIS5 161
14HANCO5 161
             Hancock Co. 161 kv
             Henderson Co. 138 kv
14HENDR4 138
              Henderson Co. 161 kv
14HENDR5 161
14HM TP5 161
              HMP&L Substation 4 Tap
              HMP&L Substation 4
14HMPL5 161
              Hopkins County 69 kV
14HOPCO 69.0
              Hopkins Co. 161 kv
14HOPCO5 161
              Livingston Co. 161 kv
14LIVIN5 161
              McCracken Co. 161 kv
14MCRAK5 161
14MEADE5 161
              Meade County 161 kV bus
14MORGAN69.0 Morganfield 69 kV
              New Hardinsburg 138 kv
14N.HAR4 138
              New Hardinsburg 161 kv
14N.HAR5 161
               National Aluminum 161 kv
14NATAL5 161
14NEWMN5 161
               Newman 161 kv
14REID 69.0
              Reid 69 kV
14REID 5 161
               Reid 161 kv
             Reid EHV 345 kv
14REID 7 345
               Skillman 161 kv
14SKILM5 161
             Wilson 161 kv
14WILSO5 161
14WILSO7 345 Wilson 345 kv
        138 Applied Energy Systems 138 kV
15AES
15AES1 13.2 AES Unit 1 13kV Generator Bus
15AES2 13.2
              AES Unit 2 13kV Generator Bus
               Ambridge 69 kV
15AMBRDG69.0
15ARMCOB69.0
               ARMCO 69 kV
               Arsenal 138 kV
15ARSENL 138
              Brunot Island 138 kV
       138
15B.I.
         345 Brunot Island 345 kV
15B.I.
15B.I. 69.0 Brunot Island 69 kV
15B.I.1 13.2 Brunot Island Units 1ABC 13kV Generator Bus
15B.I.2 13.2 Brunot Island Units 2AB 13kV Generator Bus
```

```
15B.I.3 13.2
              Brunot Island Unit 3 13kV Generator Bus
15B.I.4 13.2
            Brunot Island Unit 4 13kV Generator Bus
            Beaver Valley 138 kV
15B.V.
       138
             BRENTWOOD 138 kV
15BRENTW 138
15BUCYRU69.0
              Bucyrus 69 kV
15BV J&L 138
              Beaver Valley J&L 138 kV
              Beaver Valley 345 kV
15BVRVAL 345
              Beaver Valley Unit 1 23kV Generator Bus
15BVRVL121.5
15BVRVL221.5 Beaver Valley Unit 2 23kV Generator Bus
              Carson Tap 138 kV
15CARSNT 138
15CARSON 138 Carson 138 kV
             Carson 345 kV
15CARSON 345
15CHESWK 138
              Cheswick 138 kV
              Cheswick Unit 1 22kV Generator Bus
15CHSWK123.5
              Clairton 138 kV
15CLAIRT 138
              Clinton 138 kV
15CLINTN 138
              Clinton 345 kV
15CLINTN 345
             Colfax 69 kV
15COLFAX69.0
             Collier 138 kV
15COLLIE 138
             Collier 345 kV
15COLLIE 345
15CRE2PH 138 Crescent 138kV bus
15CRESCN 345 Crescent 345 kV
15CYCLOP 138 Cyclops 138 kV
15DRAVO 138 Dravosburg 138 kV
             Dravosburg 69 kV
15DRAVO 69.0
             Edgewater SS No. 1-138kV Bus
15EDGWTR 138
              Elrama Station No. 2-69kV Bus
15ELRM 269.0
              Elrama #3 138 kV
15ELRM 3 138
             Elrama #4 138 kV
15ELRM 4 138
15ELRM 5 138 Elrama Station No. 5-138kV Bus
15ELRM1 69.0 Elrama #1 69 kV
15ELRMA113.2 Elrama Station Unit 1 13kV Generator Bus
15ELRMA213.2 Elrama Station Unit 2 13kV Generator Bus
15ELRMA316.0 Elrama Station Unit 3 16kV Generator Bus
15ELRMA417.0 Elrama Station Unit 4 16kV Generator Bus
15ELRSYN 138 Elrama Station 138kV Sync Bus
15ELWYN 138 Elwyn 138 kV
15EVRGRN 138
              Evergreen
             Findlay 138 kV
15FINDLY 138
             Forbes 69 kV
15FORBES69.0
      69.0 General Motors 69 kV
15GM
15HIGHLA69.0 Highland 69 kV
15HOMSTD 138 Homestead SS No. 1-138kV Bus
15HOPEWE 138 Hopewell 138 kV
15HOPEWE69.0 Hopewell 69 kV
             J&L Arc Furnace 138 kV
15J&LARC 138
               J&L Midland 138 kV
15J&LMID 138
               J&L Southside 69 kV
15J&L-SS69.0
15LEGNVI 138
               Legionville 138 kV
               Logans Ferry 138 kV
15LOGNFR 138
               Midland 138 kV
15MIDLAN 138
               Montour 138 kV
15MONTOU 138
15MTNEBO 138
               Mt. Nebo 138kV
               Neville 138 kV
15NEVILL 138
 15NEVILT 138
               Neville Tap 138 kV
 15NORTH 138
               North 138 kV
```

```
15NORTH 69.0
             North 69 kV
150KLND 138
            Oakland 138 kV
15PHIL1 69.0
            Phillips #1 69 kV
             Phillips #2 12 kV
15PHIL2 12.0
15PHIL3 69.0
             Phillips #3 69 kV
15PHIL4 138
             Phillips #4 138 kV
        138 Plum 138 kV
15PLUM
15PNECRK69.0 Pine Creek 69 kV
15PPERRY 138 Port Perry SS No. 1-138kV Bus
15RACCOO 138 Raccoon 138 kV
15RANKN 138 Rankin SS No. 1-138kV Bus
15ST.JOE 138 St. Joe 138 kV
15ST.JOE69.0 St. Joe 69 kV
             St. Joe Units 13kV Generator Bus
15STJOE113.2
             Universal 138 kV
15UNIVRS 138
             USS Irvin Works 138 kV
15USS
        138
15USSBRA 138 USS Braddock 138 kV
15USSILL 138 USS Illinois 138 kV
15VALEYT 138 Valley Tap 138 kV
15VALLEY 138 Valley 138 kV
15VALLEY69.0 Valley 69 kV
15WILDWD 138 Wildwood 138 kV
15WILMER 138 Wilmerding 138 kV
            Wilmerding 69 kV
15WILMER69.0
15WILSON69.0
              Wilson 69 kV
15WOLFRN 138
              Wolf Run 138kV
15WOODVL.138
              Woodville 138 kV
16AIRCO 138 AIRCO 138 KV SUBSTATION
16ALLSN4 138 ALLISON 4 138 KV SUBSTATION
16ALLSN8 138 ALLISON 8 138 KV SUBSTATION
16BROOKW 138 BROOKWOOD 138 KV SUBSTATION
16CAMBY 138 CAMBY 138 KV SUBSTATION
16CASTLT 138 CASTLETON 138 KV SUBSTATION
16CENTER 138 CENTER 138 KV SUBSTATION
16CNTRTN 138 CENTERTON 138 KV
16CRESTV 138 CRESTVIEW 138 KV SUBSTATION
16CRFDSV 138 Crawfordsville Road
16CRMLTP 138 CARMEL TAP 138 KV
16CUMBRL 138 CUMBERLAND 138 KV SUBSTATION
16DOWELA 138 DOWELANCO 138 KV SUBSTATION
       138 EAST 138 KV SUBSTATION
16EAST
16EDGEWD 138 EDGEWOOD 138 KV SUBSTATION
16EDISON 138 EDISON 138 KV SUBSTATION
       138 FORD 138 KV SUBSTATION
16FORD
16FRANCS 345 Francis Creek
16FRANK 138 FRANKLIN TOWNSHIP 138 KV SUBSTATION
16FVE T 138
             FIVE POINTS TAP 138 KV
             GARDNER LANE 138 KV SUBSTATION
16GARDLN 138
16GEIST 138 GEIST 138 KV SUBSTATION
16GEORG113.8 GEORGETOWN UNIT 1 13.8 KV
16GEORG213.8 GEORGETOWN UNIT 2 13.8 KV
16GEORG313.8
              GEORGETOWN UNIT 3 13.8 KV
16GEORG413.8 GEORGETOWN UNIT 4 13.8 KV
16GEORGE 138 GEORGETOWN 138 KV SUBSTATION
              GERMAN CHURCH 138 KV SUBSTATION
16GER CH 138
16GLENS 138 GLENSVALLEY 138 KV SUBSTATION
```

```
GUION 138 KV SUBSTATION
16GUION 138
16GUION 345 GUION 345 KV SUBSTATION
16HANNA 138 HANNA 138 KV SUBSTATION
16HANNA 345 HANNA 345 KV SUBSTATION
16HARV F 138 HARVESTOR FOUNDARY 138 KV SUBSTATION
16HONYCK 138 HONEY CREEK TAP 138 KV
16IND_CK 138 INDIAN CREEK 138 KV SUBSTATION
16JULIET 138 Julietta 138 kV bus
16LAFFRD 138 LAFAYETTE ROAD 138 KV SUBSTATION
16LAWRNC 138 LAWRENCE 138 KV SUBSTATION
16LILLY 138 LILLY SOUTH 138 KV SUBSTATION
16MAYWOO 138 MAYWOOD 138 KV SUBSTATION
16MILL 138 MILL STREET 138 KV SUBSTATION
16MOORSV 138 MOORESVILLE 138 KV SUBSTATION
16MULLNX 138 Mullinex 138 kV bus
16NE
       138 NORTHEAST 138 KV SUBSTATION
16NORTH 138 NORTH 138 KV SUBSTATION
        138 NORTHWEST 138 KV SUBSTATION
16NW
16PARKER 138 PARKER 138 KV SUBSTATION
             PETERSBURG CT8 18.0KV COMBUSTION TURBINE
16PETCT818.0
16PETE 138 PETERSBURG PLANT 138 KV SUBSTATION
16PETE 345 PETERSBURG PLANT 345 KV SUBSTATION
16PETE 120.0 PETERSBURG UNIT 1 20 KV
16PETE 222.0 PETERSBURG UNIT 2 22 KV
16PETE 322.0 PETERSBURG UNIT 3 22 KV
16PETE 422.0 PETERSBURG UNIT 4 22 KV
16PIKE 138 PIKE 138 KV SUBSTATION
16PK FLE 138 PARK FLETCHER 138 KV SUBSTATION
16POST 138 Post Road
16PRITC113.8 Pritchard 1
              Pritchard 2
16PRITC213.8
16PRITC313.8 Pritchard 3
16PRITC413.8 Pritchard 4
16PRITC513.8 Pritchard 5
16PRITC613.8 Pritchard 6
16PRITCH 138 PRITCHARD PLANT 138 KV SUBSTATION
16PROSPC 138 PROSPECT 138 KV SUBSTATION
16RIV RD 138 RIVER ROAD 138 KV SUBSTATION
16ROCKVL 138 ROCKVILLE 138 KV SUBSTATION
16ROCKVL 345 ROCKVILLE 138 KV SUBSTATION
16SAN BL 138 SANITATION BELMONT 138 KV SUBSTATION
16SAN SP 138 SANITATION SOUTHPORT 138 KV SUBSTATION
16SE
     138 SOUTHEAST 138 KV SUBSTATION
16SHEFFI 138 SHEFFIELD 138 KV SUBSTATION
16SOUTH 138 SOUTH 138 KV SUBSTATION
16STHPRT 138 SOUTHPORT 138 KV SUBSTATION
16STOCT413.8 Stout CT 4
16STOCT513.8 Stout CT 5
16STOCT618.0 Stout CT 6
16STOCT718.0 Stout CT7
16STOUGT13.8 Stout Gas Turbines
16STOUT 345 STOUT PLANT 345 KV SUBSTATION (SOUTH YARD)
16STOUT313.8 STOUT UNIT 3 13.8 KV
16STOUT413.8 STOUT UNIT 4 13.8 KV
16STOUT513.8 STOUT UNIT 5 13.8 KV
16STOUT613.8 STOUT UNIT 6 13.8 KV
```

```
STOUT UNIT 7 22 KV
16STOUT722.0
              STOUT PLANT 138 KV SUBSTATION (SOUTH YARD)
16STOUTC 138
              STOUT PLANT 138 KV SUBSTATION (NORTH YARD)
16STOUTN 138
16STOUTS 138
              STOUT PLANT 138 KV SUBSTATION (SOUTH YARD)
16SUNNYS 138
             SUNNYSIDE 138 KV SUBSTATION
16SUNNYS 345 SUNNYSIDE 345 KV SUBSTATION
16SW
       138 SOUTHWEST 138 KV SUBSTATION
16TEPPCO 138 TEPPCO 138KV SUBSTATION
16THOMPS 138 IPL Thompson Substation 138 kV
16THOMPS 345
             THOMPSON 345 KV SUBSTATION
16TOBEY 138
             TOBEY 138 KV SUBSTATION
16TREMNT 138
              TREMONT 138 KV SUBSTATION
16UNITED 138
              UNITED 138 KV SUBSTATION
16WEST
        138
              WEST 138 KV SUBSTATION
16WHEAT 345 WHEATLAND (ENRON) PLANT
16WILLMS 138 WILLIAMS STREET 138 KV SUBSTATION
16WSTLAN 138 WESTLANE 138 KV SUBSTATION
176936 B69.0 LaGrange Co. R.E.M.C. Indian Lakes 69kV Tap
176942 A69.0 Hoosier Hill 69kV Tap
176942_F69.0 Fremont 69kV Tap
176959_E69.0
              Hudson 69kV Tap
176966_C69.0
              Jasper Co. R.E.M.C. Carpenter 69kV Tap
176966 E69.0
              Remington 69kV Tap
176986_B69.0
              W.V.P.A. Waterloo Ind. Park 69kV Tap
176986_L69.0 Steuben Co. R.E.M.C. East Angola Tap
176987_C69.0 LaGrange Co. R.E.M.C. North LaGrange 69kV Tap
176990_C69.0 Topeka 69kV Tap
176991_B69.0 McGill 69kV Tap
176991 E69.0 Sharp Steel Service 69kV Tap
176994 B69.0 6994 to 6942 69kV Tap
176994_K69.0 Univertical Corp. 69kV Tap
             Aetna Substation 138kv Bus
17AETNA 138
              Ainsworth Substation 138kV Bus
17AINWTH 138
17AMOCO 138
              AMOCO Substation 138kV Bus
             Angola Substation 69kv Bus
17ANGOLA69.0
17BABCOK 138 Babcock Substation 138kV Bus
17BABCOK 345 Babcock Substation 345kv Bus
        138 Beta Steel Arc Furnace Substation 138kV Bus
17BETA
17BRGHTN69.0 Brighton Substation 69kV Bus
17BRTNLK 138 Barton Lake Substation 138kv Bus
17BRTNLK69.0 Barton Lake Substation 69kv Bus
17BURNSD 138 Burns Ditch Substation 138kV Bus
17BUROAK 138 Burr Oak Substation 138kv Bus
              Burr Oak Substation 345kv Bus
17BUROAK 345
             Buttermilk Corners Substation 69kV Bus
17BUTRMK69.0
17CALUMT 138 Calumet Substation 138kV Bus
17CHIAVE 138 Chicago Avenue Substation 138kv Bus
17CHIAVE 345 Chicago Avenue Substation 345kv Bus
17DEKALB 138 Dekalb Substation 138kv Bus
17DEKALB69.0 Dekalb Substation 69kv Bus
17DUNACR 138 Dune Acres Substation 138kv Bus
17DUNACR 345 Dune Acres Substation 345kv Bus
17EWINMC 138 East Winamac Substation 138kV Bus
17FLNTLK 138
              Flint Lake Substation 138kv Bus
              Goodland Substation 138kv Bus
17GODLND 138
17GODLND69.0
              Goodland Substation 69kV Bus
```

```
Green Acres Substation 138kV Bus
17GRNACR 138
17GRNACR 345
              Green Acres Substation 345kv Bus
             Goshen Junction Substation 138kv Bus
17GSHJCT 138
             Hartsdale Substation 138kV Bus
17HARTSD 138
              Hendricks Substation 138kV Bus
17HENDRK 138
              Highland Substation 138kV Bus
17HIGHLD 138
17HIPLE 138
              Forrest G. Hiple Substation 138kv Bus
17HIPLE 345
              Forrest G. Hiple Substation 345kv Bus
              Forrest G. Hiple Substation 69kv Bus
17HIPLE 69.0
17HONEYC69.0
              Honey Creek Substation 69kV Bus
              Howe Substation 69kv Bus
17HOWE 69.0
17INLND5 138
              Inland Steel Co. No. 5 Substation 138kV Bus
              Inland Steel Co. No. 7 Substation 138kV Bus
17INLND7 138
              Inland Steel Co. No. 8 Substation 138kV Bus
17INLND8 138
17ISG 2 138 ISG Indiana Harbor, Inc. #2
17ISG 3 138 ISG Indiana Harbor, Inc. #3
17ISG BH 138
              ISG Burns Harbor, Inc. - Steel Plant
               Kenwood Substation 138kV Bus
17KENWOD 138
17KOSCKO 138
              Kosciusko Substation 138kV Bus
17LAGRNG 138
              Lagrange Substation 138kv Bus
              Lagrange Substation 69kv Bus
17LAGRNG69.0
17LESBRG 138
              Leesburg Substation 138kv Bus
17LESBRG 345
              Leesburg Substation 345kv Bus
17LESBTP 138
               Leesburg 138kV Tap
17LIBRTY 138
               Liberty Park Substation 138kV Bus
17LKGORG 138
               Lake George Substation 138kv Bus
               Lake George Substation 345kv Bus
17LKGORG 345
17LNG
         138
              L.N.G. Plant Substation 138kV Bus
17LUCHTM 138
              Lutchman Substation 138kV Bus
17MAPLE 138
               Maple Substation 138kv Bus
17MCHCTY 138
               Michigan City Generating Station 138kv Bus
17MCHCTY 345
               Michigan City Generating Station 345kv Bus
17MIDWST 138
              Midwest Steel Substation 138kV Bus
             Miller Substation 138kv Bus
17MILLER 138
17MITCHL 138 Dean H. Mitchell Generating Station 138kv Bus
17MITCHY 138 D.H. Mitchell Generating Station 34kV Yard 138kV B
              Monticello Substation 138kv Bus
17MONTCL 138
17MONTCL69.0
              Monticello Substation 69kV Bus
17MRKTNE 138
              Marktown Substation East 138kV Bus
              Marktown Substation West 138kV Bus
17MRKTNW 138
17MUNSTR 138
               Munster Substation 138kv Bus
               Munster Substation 345kv Bus
17MUNSTR 345
              Nevada Mills Substation 69kV Bus
17NEVADA69.0
              Northeast Substation 138kv Bus
17NRTHES 138
              Northport Substation 138kv Bus
17NRTHPT 138
              Northport Substation 69kv Bus
17NRTHPT69.0
               Oakdale Hydro Station 69kV Bus
170AKDAL69.0
               Otter Substation 69kV Bus
170TTER 69.0
               Plymouth Substation 138kv Bus
17PLYMTH 138
               Plymouth Substation 69kv Bus
17PLYMTH69.0
               LaGrange Co. R.E.M.C Prairie Heights Substation 69
17PRAIRE69.0
               Praxair, Inc. - Substation No. 1 (E.Chicago) 138kV
17PRAX 1 138
               Praxair, Inc. - Substation No. 3 (Lake Side) 138kV
17PRAX 3 138
               Praxair, Inc. - Substation No. 5 (Burns Harbor) 13
17PRAX 5 138
               Praxair 138kV Tap
17PRAXTP 138
17RCHSTP69.0
               Rochester Tap (Intertie point w/ PSI)
```

```
Remington Substation 69kV Bus
17REMGTN69.0
17ROXANA 138
              Roxana Substation 138kv Bus
17RYNLDS 138
              Reynolds Substation 138kv Bus
              R. M. Schahfer Generating Station 138kv Bus
17SCHAFR 138
17SCHAHF 345
              R. M. Schahfer Generating Station
17SCHFTP 138
              Schahfer 138kV Tap
17SCHLMR69.0
              South Chalmers Substation 69kV Bus
              Sheffield Substation 138kv Bus
17SHEFLD 138
              Sheffield Substation 345kv Bus
17SHEFLD 345
              South Milford Substation 69kV Bus
17SMILFD69.0
              South Prairie 69kV Tap
17SPR TP69.0
              South Prairie Substation 138kv Bus
17SPRARI 138
              South Prairie Substation 69kV Bus
17SPRARI69.0
             Starke Substation 138kV Bus
17STARKE 138
              Saint John Substation 138kv Bus
17STJOHN 138
              Saint John Substation 345kv Bus
17STJOHN 345
             Stillwell Substation 138kv Bus
17STLWEL 138
              Stillwell Substation 345kv Bus
17STLWEL 345
             Taney Substation 138kV Bus
17TANEY 138
              Thayer Substation 138kV Bus
17THAYER 138
17TOWRRD 138 Tower Road Substation 138kv Bus
17TRALCK 138 Trail Creek Substation 138kv Bus
             Twin Lakes Substation 69kV Bus
17TWINLK69.0
              Tower Road Substation 345kv Bus
17TWR RD 345
              White Co. R.E.M.C. Ulerich Substation 69kV Bus
17ULERCH69.0
              United States Steel Corp. Tin Mill Substation 138k
17US TIN 138
              United States Steel Corp. Coke Works Substation 13
17USCOKE 138
              United States Steel Corp. Stockton Substation 138k
17USSTCK 138
17USWMIL 138 United States Steel Corp. West Mill Substation 138
        138 Whiting Clean Energy 138kV Bus
17WCEP
17WOLCTV69.0 Wolcottville Substation 69kV Bus
17WOLFLK 138 Wolf Lake Substation 138kv Bus
             TWELFTH STREET 138 KV
1812THT 138
1812THTJ 138
             12TH ST JCT 138 KV
             ABBE 138 KV
18ABBE 138
             ABBE JCT 138 KV
18ABBE J 138
             ACUGLAS 138 KV
18ACUGS 138
             AIRPORT
18AIRPT 138
             AIRPORT 2 138 KV
18AIRPT2 138
             ALBA 138 KV
18ALBA 138
             ALCONA 138 KV
18ALCO
        138
18ALCO G4.80
             ALCONA 4.8 KV
             ALDER CREEK 138 KV
18ALDE
        138
             ALGER 138 KV
18ALGE
       138
             ALGER JCT 138 KV
18ALGE J 138
               ALGOMA 138 KV
18ALGO 138
18ALGO J 138
               ALGOMA JCT 138 KV
18ALMA
        138
               ALMA
        138
18ALME
               ALMEDA 138 KV
18ALPE E 138
             ALPENA E 138 KV
18ALPE W 138
             ALPENA W 138 KV
              ALPENA 4 INDUSTRAIAL 138 KV
18ALPE4I 138
              ALPENA 5 INDUSTRIAL 138 KV
18ALPE5I 138
               ALPINE 138 KV
18ALPI
       138
               ALPINE JCT 138 KV
18ALPI J 138
               AMERICAN BUMPER 138 KV
18AM BP 138
```

```
18AM BPJ 138
            AMERICAN BUMPER JCT 138 KV
18AMAS 138 AMASTEEL 138 KV
18AMBE 1 138 AMBER 1 138 KV
18AMBE 2 138 AMBER 2 138 KV
18ARGENT 138
            ARGENTA
18ARGENT 345
            ARGENTA
18ATLN2J 138
            ATLANTA 138 KV
            ATLANTA JUNCTION
18ATLNTJ 138
18AUBIK 138
            AUBIL LAKE 138 KV
18AUBIKJ 138 AUBIL LAKE JCT 138 KV
18BACK 138 BACKUS 138 KV
18BACK J 138 BACKUS JCT 138 KV
18BAGL 1 138 BAGLEY 1 138 KV
18BAGL 2 138 BAGLEY 2 138 KV
18BANG 138 BANGOR 138 KV
18BARDDB 138 BARD ROAD B 138 KV
18BARDDW 138 BARD ROAD W 138 KV
18BARN 138 BARNUM 138 KV
18BARN J 138 BARNUM CREEK JCT 138 KV
18BARR 138 BARRY 138 KV
18BARR J 138 BARRY JCT 138 KV
18BASSK 138 BASS CREEK 138 KV
18BATAA1 138 BATAVIA 1 138 KV
18BATAVI 138 BATAVIA
18BATTK 138 BATTLE CREEK 138 KV
18BATTK 345 BATTLE CREEK 345 KV
18BAY 1 138 BAY ROAD 1 138 KV
18BAY 2 138 BAY ROAD 2 138 KV
18BEAL 2 138 BEALS ROAD 2 138 KV
18BEAL B 138
             BEALS ROAD B 138 KV
            BEALS ROAD W 138 KV
18BEAL W 138
18BEAVK 138 BEAVER CREEK 138 KV
18BECK 138 BECKER 138 KV
18BECK J 138 BECKER JCT 138 KV
18BEEC B 138 BEECHER B 138 KV
18BEEC W 138 BEECHER W 138 KV
18BEGO 138 BEGOLE 138 KV
18BELL 138 BELL ROAD 138 KV
18BENNN 138 BENNINGTON 138 KV
            BEVERIDGE B 138 KV
18BEVE B 138
18BEVE W 138
            BEVERIDGE W 138 KV
            BIL MAR 138 KV
18BIL R 138
18BIL RJ 138 BIL MAR JCT 138 KV
18BINGMB 138 BINGHAM B 138 KV
18BINGMW 138 BINGHAM W 138 KV
18B-K X 138 B-K AUX 138 KV
18BLACN 138 BLACKMAN 138 KV
18BLCK 1 138 BLACK RIVER 1 138 KV
18BLCK 2 138 BLACK RIVER 2 138 KV
18BLCK 3 138 BLACK RIVER 3 138 KV
18BLCK B 138
             BLACKSTONE B 138 KV
            BLACKSTONE W 138 KV
18BLCK W 138
18BLENN1 138 BLENDON 1 138 KV
18BLENN2 138 BLENDON 2 138 KV
18BLIN 1 138 BLINTON 1 138 KV
18BLIN 2 138 BLINTON 2 138 KV
```

```
18BLUER 138
            BLUEWATER 138 KV
18BLUERJ 138 BLUEWATER JCT 138 KV
18BLUES 138 BLUEGRASS 138 KV
18BLUESJ 138 BLUEGRASS JCT 138 KV
18B-M X 138 B-M AUXILIARY 138 KV
18BOXB 138 BOXBOARD 138 KV
18BOXB J 138 BOXBOARD JCT 138 KV
18BRADY 138 BRADLEY 138 KV
18BRDM 1 138 BOARDMAN 1 138 KV
18BRDM 2 138 BOARDMAN 2 138 KV
18BRDMB2 138 BOARDMAN B2 138 KV
18BRG&R 138 BRIGGS & STRATON 138 KV
18BRG&RJ 138 BRIGGS & STRATON JCT 138 KV
18BRICD 138 BRICKYARD 138 KV
18BRICDJ 138 BRICKYARD JCT 138 KV
            BRICKER 138 KV
18BRICR 138
18BRICRJ 138 BRICKER JCT 138 KV
18BROAR1 138 BROADMOOR 1 138 KV
18BROAR3 138 BROADMOOR 3 138 KV
18BROAR4 138 BROADMOOR 4 138 KV
18BROGL 138 BROUGHWELL 138 KV
18BRON 138 BRONCO 138 KV
18BRON T 138 BRONCO T 138 KV
18BUCKK 138 BUCK CREEK 138 KV
18BUIC 1 138 BUICK 1 138 KV
18BUIC 2 138 BUICK 2 138 KV
            BULLOCK B 138 KV
18BULL B 138
            BULLOCK W 138 KV
18BULL W 138
18CALHN 138 CALHOUN
18CALHNJ 138 CALHOUN JCT 138 KV
18CAMET 138 CAMELOT 138 KV
18CAMETJ 138 CAMELOT LAKE JCT 138 KV
18CAMP 5 345 CAMPBELL 5 345 KV
18CAMP B 138 CAMPBELL B 138 KV
18CAMP P13.8 CAMPBELL PEAKER
18CAMP W 138 CAMPBELL W 138 KV
18CAMP1 345 CAMPBELL 345 KV
18CAMP1G16.0 CAMPBELL UNIT 1
            CAMPBELL SWITCHYARD 345 KV
18CAMP2 345
18CAMP2G20.0 CAMPBELL UNIT 2
18CAMP3G18.0 CAMPBELL UNIT 3
18CANA 138 CANAL 138 KV
18CANA J 138 CANAL JCT 138 KV
18CANN 138 CANNON 138 KV
18CANN J 138 CANNON JCT 138 KV
18CART 138 CARTER 138 KV
18CART J 138 CARTER JCT 138 KV
18CEDRR 138 CEDAR SPRINGS 138 KV
            CEDAR SPRINGS JCT 138 KV
18CEDRRJ 138
18CEME 138 CEMENT CITY 138 KV
18CEME J 138 CEMENT CITY JCT 138 KV
18CHAS 138 CHASE 138 KV
18CHICO 138 CHICAGO 138 KV
18CHICOJ 138 CHICAGO JCT 138 KV
18CHURL 138 CHURCHILL 138 KV
18CHURLJ 138 CHURCHILL JCT 138 KV
```

```
18CLAR 138
            CLARE 138 KV
18CLAR J 138 CLARE JCT 138 KV
18CLEAT 138 CLEARWATER 138 KV
18CLEATJ 138 CLEARWATER JCT 138 KV
18CLEVD 138 CLEVELAND 138 KV
18CLEVDJ 138 CLEVELAND JCT 138 KV
18CLRM B 138
             CLAREMONT B 138 KV
            CLAREMONT W 138 KV
18CLRM W 138
18CLUB 138 CLUB 138 KV
18CLUB J 138 CLUB JCT 138 KV
18C-M X 138 C-M AUXILIARY 138 KV
18COBB B 138 COBB B 138 KV
18COBB W 138 COBB W 138 KV
18COBB1G14.4 COBB 1G 14.4 KV
            COBB 2G 14.4 KV
18COBB2G14.4
            COBB 3G 14.4 KV
18COBB3G14.4
18COBB4G18.0
             COBB UNIT 4
18COBB5G18.0
             COBB UNIT 5
            COCHRAN 138 KV
18COCHN 138
18COCHNJ 138
            COCHRAN JCT 138 KV
18COLDR 138 COLDWATER 138 KV
18COLEK 138 COLE CREEK 138 KV
18COLEKJ 138 COLE CREEK JCT 138 KV
18COLNM 138 COLONY FARM 138 KV
18COLNMJ 138 COLONY FARM 138 KV
18CONV 138
            CONVIS 138 KV
18CONV J 138
            CONVIS JCT 138 KV
18CORNLB 138
            CORNELL B 138 KV
18CORNLW 138
            CORNELL W 138 KV
            COTTAGE GROVE 138 KV
18COTTV 138
18COVE 345 COVERT 345 KV
18COVE1G21.0 COVERT 1G 21 KV
18COVE1M21.0 COVERT 1M 21 KV
18COVE2G21.0 COVERT 2G 21 KV
18COVE2M21.0 COVERT 2M 21 KV
18COVE3G21.0 COVERT 3G 21 KV
18COVE3M21.0 COVERT 3M 21 KV
            COVERT 4G 21 KV
18COVE4G21.0
            COVERT 5G 21 KV
18COVE5G21.0
18COVE6G21.0
             COVERT 6G 21 KV
      138
18COWA
            COWAN LAKE 138 KV
18COWA J 138 COWAN JCT 138 KV
18CROT B 138 CROTON B 138 KV
18CROT W 138 CROTON W 138 KV
18DAVI 138 DAVIS 138 KV
18DEAN
      138
            DEAN ROAD 138 KV
18DEJA 138
            DEJA
18DEJA J 138
            DEJA JCT 138 KV
18DELAY 138
             DELANEY 138 KV
18DELH B 138
             DELHI B 138 KV
18DELH W 138
            DELHI W 138 KV
18DENS
      138
            DENSO JACKSON 138 KV
18DENS J 138
            DENSO JACKSON JCT 138 KV
18DERB 138
            DERBY 138 KV
18DERB J 138
            DERBY JCT 138 KV
18DIEST 138
            DIESEL TECH 138 KV
```

```
18DIESTJ 138
             DIESEL TECH JCT 138 KV
18D-O X 138
             D-O AUX 138 KV
18DORT B 138
             DORT B 138 KV
18DORT W 138
             DORT W 138 KV
18DOWCG1 138
              DOW CORNING 1 138 KV
18DOWCG2 138
              DOW CORNING 2 138 KV
18DOWLG 138
              DOWLING 138 KV
18DOWLGJ 138
              DOWLING JCT 138 KV
             DRAKE 1 138 KV
18DRAK 1 138
18DRAK 2 138
             DRAKE 2 138 KV
        138
             DUFFIELD 138 KV
18DUFF
18DUFF J 138
             DUFFIELD JCT 138 KV
              DUPONT 138 KV
18DUPO
        138
18DUQUE 138
              DUOUITE 138 KV
        138
              DUTTON 138 KV
18DUTT
              DUTTON JCT 138 KV
18DUTT J 138
18E PAS 138
              EAST PARIS 138 KV
              EAST TAWAS 138 KV
18E TAS 138
18EAST
        138
             EASTON 138 KV
18EAST J 138
             EASTON JCT 138 KV
18E-C X 138
            E-C AUX 138 KV
18ECK1
        138
             ECKERT 138 KV
18EDENL 138
            EDENVILLE 138 KV
             EDENVILLE JCT 138 KV
18EDENLJ 138
18E-I X 138
             E-I AUX 138 KV
             ELM STREET 138 KV
18ELM
         138
18ELMWD 138
              ELMWOOD 138 KV
              EMMET 138 KV
18EMME
        138
18EMME W 138
              EMMET W 138 KV
18ENGLL 138
              ENGLISHVILLE 138 KV
             ENGLISHVILLE JCT 138 KV
18ENGLLJ 138
             ENTERPRISE 138 KV
        138
18ENT1
18ERICON 138 ERICKSON 138 KV
         138 EUREKA 138 KV
18EURE
         138 EVART PRODUCTS 138 KV
18EVAR
18FARRD 138 FARR ROAD 138 KV
18FARRDJ 138 FARR ROAD JCT 138 KV
             FELCH ROAD 138 KV
18FELC
         138
18FILET 138
               FILER CITY 138 KV
18FILETC13.8
             FILER CITY 13.8 KV
18FILLR 138 FILLMORE 138 KV
18FILLRJ 138 FILLMORE JCT 138 KV
18FOUNY1 138 FOUNDRY 1 138 KV
             FOUNDRY 2 138 KV
18FOUNY2 138
             FOUR MILE B 138 KV
18FOUR B 138
18FOUR W 138
              FOUR MILE W 138 KV
18FOUR34 138
               FOUR MILE 34 138 KV
18F-R X 138
              F-R AUXILIARY 138 KV
18FTCU 1 138
               FORT CUSTER 1 138 KV
18FTCU 2 138
               FORT CUSTER 2 138 KV
               GAINES 138 KV
18GAIN
         138
         345
               GAINES 345 KV
18GAIN
               GALLAGHER 138 KV
18GALLR 138
18GALLR 345
               GALLAGHER 345 KV
18GALLRJ 345
               GALLAGHER JCT 345 KV
18GARF B 138
               GARFIELD B 138 KV
```

```
18GARF W 138
            GARFIELD W 138 KV
18GAYDA 138
           GAYLORD 138 KV
18GAYDB 138 GAYLORD 138 KV
18GAYL2G13.8
           GAYLORD 2G 13.8 KV
           GAYLORD 4G 13.8 KV
18GAYL4G13.8
            GAYLORD 5G 13.8 KV
18GAYL5G13.8
18GAYLD1 138
            GAYLORD 1 138 KV
            GAYLORD M 13.8 KV
18GAYLDM13.8
            GLEANER 138 KV
18GLEAR 138
18GLEARJ 138 GLEANER JCT 138 KV
18GM13 138 GM 138 KV
18GNDT1 138 GRAND TRAVERSE 1 138 KV
18GNDT1J 138 GRAND TRAVERSE 1 JCT 138 KV
18GNDT2 138 GRAND TRAVERSE 2 138 KV
18GNDT2J 138
            GRAND TRAVERSE 2 JCT 138 KV
18GOSS
      138
            GOSS
18GOSS
        345
             GOSS
18GREED 138
            GREENWOOD 138 KV
18GREEDJ 138
            GREENWOOD JCT 138 KV
18GREYN3 138
           GREY IRON 3 138 KV
18GREYN4 138 GREY IRON 4 138 KV
18GRNDC1 138 GRAND BLANC BOC 1 138 KV
18GRNDC2 138
           GRAND BLANC BOC 2 138 KV
           GRODI ROAD 138 KV
18GRODR 138
18GRODRJ 138
           GRODI ROAD JCT 138 KV
            GROUT 138 KV
18GROU 138
            GROUT JCT 138 KV
18GROU J 138
            HACKETT 138 KV
18HACKT 138
18HACKTJ 138
             HACKETT JCT 138 KV
            HAGADORN 138 KV
18HAGAN 138
            HAGADORN JCT 138 KV
18HAGANJ 138
18HAGE 138 HAGER PARK 138 KV
18HAGE J 138 HAGER JCT 138 KV
18HALS B 138 HALSEY B 138 KV
18HALS W 138 HALSEY W 138 KV
18HAMPTO 345 HAMPTON
18HARDM 138 HARDY DAM 138 KV
18HARDMG7.50 HARDY DAM 7.5 KV
            HARING 138 KV
18HARI 138
18HARI J 138 HARING JCT 138 KV
18HART8 138 HART 88 138 KV
18HART8J 138 HART 88 JCT 138 KV
18HEMP B 138 HEMPHILL B 138 KV
18HEMP W 138 HEMPHILL W 138 KV
18HEMP4B 138 HEMPHILL 4B 138 KV
18HENDT 138
            HENDERSHOT 138 KV
            HENDERSHOT JCT 138 KV
18HENDTJ 138
18HIGG 138
             HIGGINS 138 KV
            HIGGINS 4 138 KV
18HIGG 4 138
            HILLMAN 138 KV
18HILLN 138
18HILLNC13.8 HILLMAN 13.8 KV
18HILLNJ 138 HILLMAN JCT 138 KV
18HMPHLD 120 HEMPHILL
18HODNL 138 HODENPLY 138 KV
```

6

```
HODENPYL JCT 138 KV
18HODNLJ 138
              HOLLAND 1 138 KV
18HOLLD1 138
              HOLLAND 2 138 KV
18HOLLD2 138
              HOLLAND 3 138 KV
18HOLLD3 138
              HOTCHKISS 138 KV
18HOTCS 138
       138
              HOW 138 KV
18HOW1
        138
              HEMLOCK 138 KV
18HSC
18HUDSL 138
              HUDSONVILLE 138 KV
18HUDSLT 138
              HUDSONVILLE JCT 138 KV
              HUGHES ROAD 138 KV
18HUGH 138
18HULLT 138
              HULL STREET 138 KV
              HULL STREET JCT 138 KV
18HULLTJ 138
              INDUSTRIAL 138 KV
18INDURI 138
             IOSCO 1 138 KV
18IOSC 1 138
             IOSCO 2 138 KV
18IOSC 2 138
             ISLAND ROAD B 138 KV
18ISLA B 138
18ISLA W 138
             ISLAND ROAD W 138 KV
18JAMEN 138
             JAMESTOWN 138 KV
18JAMENJ 138
             JAMESTOWN 138 KV
             JAMESSTREET 138 KV
18JAMETI 138
             KALAMAZOO RIVER 138 KV
18KALR 138
             KALAMAZOO RIVER G 13.8 KV
18KALR G13.8
             KARN UNIT 3
18KARN 3 345
             KARN UNIT 4
18KARN 4 345
             KARN B 138 KV
18KARN B 138
18KARN W 138 KARN W 138 KV
18KARN3G26.0 KARN UNIT 3
             KARN UNIT 4
18KARN4G26.0
             KARN BM 16 KV
18KARNBM16.0
             KARN WM 16 KV
18KARNWM16.0
             K-B AUX 138 KV
18K-B X 138
18KENDK 138
             KENDRICK 138 KV
         345
              KENOWA 345 KV
18KENO
              KENTWOOD 1 138 KV
18KENT 1 138
18KENT 2 138
              KENTWOOD 2 138 KV
             KEYSTONE 138 KV
18KEYS 138
       345 KEYSTONE 345 KV
18KEYS
18KIPP 138 KIPP ROAD 138 KV
18KRAF 1 138 KRAFT 1 138 KV
18KRAF 2 138 KRAFT 2 138 KV
             KARN 1A GENERATOR
18KRN1AG16.0
             KARN 1B GENERATOR
18KRN1BG16.0
              KARN 2A GENERATOR
 18KRN2AG16.0
 18KRN2BG16.0
               KARN 2B GENERATOR
              LACKS 138 KV
        138
 18LACK
             LACKS JCT 138 KV
 18LACK J 138
             LAFAYETTE 138 KV
 18LAFYT 138
             LATIMER 138 KV
 18LATIR 138
 18LATIRJ 138
             LATIMER JCT 138 KV
 18LATSON 138
             LATSON
        138
             LAWNDALE 138 KV
 18LAWN
              LAYTON 138 KV
 18LAYT
         138
              LEONI 138 KV
 18LEON
         138
         138
              LETTS RD 138 KV
 18LETS
 18LETS J 138
              LETTS RD JCT 138 KV
             LEWISTON 138 KV
 18LEWIN 138
```

```
18LEWINJ 138 LEWISTON JCT 138 KV
18LINBG 138 LINDBERGH 138 KV
18LINCN 138 LINCOLN 138 KV
            LINCOLN 13.8 KV
18LINCNC13.8
            LINCOLN JCT 138 KV
18LINCNJ 138
18LIVP 138 LIVINGSTON P 138 KV
18LIVP1G13.8 LIVINGSTON 1G 13.8 KV
18LIVP2G13.8 LIVINGSTON 2G 13.8 KV
18LIVP3G13.8 LIVINGSTON 3G 13.8 KV
18LIVP4G13.8 LIVINGSTON 4G 13.8 KV
18LK CNT 138 LAKE COUNTY 138 KV
18LOOKS 138 LOOKING GLASS 138 KV
18LOOKSJ 138 LOOKING GLASS JCT 138 KV
18LORI 138 LORIN 138 KV
18LORI J 138 LORIN JCT 138 KV
18LOUD 138 LOUD 138 KV
18LOVEY 138 LOVEJOY 138 KV
18LOVEYJ 138 LOVEJOY JCT 138 KV
18LOWE 138 LOWELL 138 KV
18LOWE J 138 LOWELL JCT 138 KV
18LUDI2G20.0 LUDINGTON 2G 20 KV
18LUDI4G20.0 LUDINGTON 4G 20 KV
18LUDI6G20.0 LUDINGTON 6G 20 KV
18LUDITN 345 LUDINGTON 345 KV
18LVNS 138 LIVINGSTON 138 KV
      345 LIVINGSTON 345 KV
18LVNS
18MALL 1 138 MALLEABLE 1 138 KV
18MALL 2 138 MALLEABLE 2 138 KV
18MANLS 138 MANLIUS 138 KV
18MANNG 138 MANNING 138 KV
18MANNG 345 MANNING 345 KV
18MANNGJ 345 MANNING JCT 345 KV
18MARQ 138 MARQUETTE 138 KV
18MARQ 1 138 MARQUETTE 1 138 KV
18MARSL 138 MARSHALL 138 KV
18MCGL 1 138 MCGULPIN 1 138 KV
18MCGL 2 138 MCGULPIN 2 138 KV
18MCGULP 138 MCGULPIN
18MCNA 138 MCNALLY 138 KV
        345 MIDLAND COGENERATION VENTURE
18MCV
18MCV 3C13.8 MCV 3 GENERATOR
18MCV 4C13.8 MCV 4 GENERATOR
18MCV 5C13.8 MCV 5 GENERATOR
18MCV 6C13.8 MCV 6 GENERATOR
18MCV 7C13.8 MCV 7 GENERATOR
18MCV 8C13.8 MCV 8 GENERATOR
18MCV 9C13.8 MCV 9 GENERATOR
18MCV1 345 MCV 1 345 KV
18MCV12 138 MCV 1112 138 KV
18MCV138 138 MICHIGAN CO-GEN VENTURE 1 138 KV
18MCV14 138 MCV 1314 138 KV
18MCV2 345 MCV 2 345 KV
18MCV238 138 MICHIGAN CO-GEN VENTURE 2 138 KV
18MCV34 138 MCV 34 138 KV
18MCV56 138 MCV 56 138 KV
18MCV78 138 MCV 78 138 KV
```

```
18MCV9 138 MCV 910 138 KV
            MCV 10 GENERATOR
18MCVG0C13.8
            MCV 11 GENERATOR
18MCVG1C13.8
18MCVG2C13.8 MCV 12 GENERATOR
18MCVG3C13.8 MCV 13 GENERATOR
18MCVG4C13.8 MCV 14 GENERATOR
18MCVS1C22.0 MICHIGAN CO-GEN VENTURE 22 KV
18MEADB 138 MEADOWBROOKE 138 KV
18MEADBJ 138 MEADOWBROOKE JCT 138 KV
18MECOA 138 MECOSTA 138 KV
18MECOA1 138 MECOSTA 1 138 KV
            MECOSTA 2 138 KV
18MECOA2 138
18MEDU 138
             MEDUSA 138 KV
            MICHIGAN POWER 1G 13.8 KV
18MICH1G13.8
18MICH2G13.8 MICHIGAN POWER 2G 138 KV
18MICHN 138 MICHIGAN 138 KV
18MICHNJ 138 MICHIGAN JCT 138 KV
18MICHR 138 MICHIGAN POWER 138 KV
18MICHV 138 MICHIGAN AVENUE 138 KV
18MILED 138 MILES ROAD 138 KV
18MILH 138 MILHAM 138 KV
18MILH 1 138 MILHAM 1 138 KV
18MILLT 138 MILLERS POINT 138 KV
18MIO 138
            MIO
18MIO 2.50 MIO GENERATOR
18MIO G2.50 MIO G 2.5 KV
18MIO 1 138 MIO B1 138 KV
18MONI 138 MONITOR 138 KV
18MOOR 138 MOORE ROAD 138 KV
18MOOR 1 138 MOORE ROAD 1 138 KV
18MOOR 2 138 MOORE ROAD 2 138 KV
18MORR B 138 MORROW B 138 KV
18MORR P13.8 MORROW P 13.8 KV
18MORR W 138 MORROW W 138 KV
18MULLS 138 MULLINS 138 KV
18MULLSJ 138 MULLINS JCT 138 KV
18MUSK N 138 MUSKEGON N 138 KV
18MUSK S 138 MUSKEGON S 138 KV
18N FIE 138 NORTHERN FIBRE 138 KV
18N FIEJ 138 NORTHERN FIBRE JCT 138 KV
18NBELG 138 NORTH BELDING 138 KV
18NCORA 138 NORTH CORUNNA 138 KV
18NCORAJ 138 NORTH CORUNNA JCT 138 KV
            NORTH CRYTES 138 KV
18NCRES 138
18NEFFD 138
            NEFF ROAD 138 KV
            NEFF ROAD JCT 138 KV
18NEFFDJ 138
            NELSON ROAD 345 KV
18NELSD 345
18NINE 138
            NINETEEN MILE 138 KV
18NINE J 138
            NINETEEN MILE JCT 138 KV
18NORTAS 138
            NORTHEAST 138 KV
180AKLD 138
            OAKLAND 138 KV
            ODEN
       138
180DEN
180GEM 138
            OGEMAW 138 KV
180GEM J 138
             OGEMAW JCT 138 KV
180HMAD 138
             OHMAN ROAD 138 KV
180HMADJ 138
            OHMAN ROAD JCT 138 KV
```

```
180LDS3 138
              OLDS 3 138 KV
              OLDS 5 138 KV
180LDS5 138
180NEIDA 138
              ONEIDA
180NEIDA 345
              ONEIDA
180TSE
        138
              OTSEGO 138 KV
              OWOSSO 138 KV
        138
180WOS
18PAGE
       138
              PAGE AVENUE
18PALI G22.0
              PALISADES G 22 KV
18PALISA 345
              PALISADES
18PARKL 138
              PARKVILLE 138 KV
              PARKVILLE JCT 138 KV
18PARKLJ 138
              PARR ROAD 138 KV
18PARRD 138
18PARSV 138
              PARSHALLVILLE 138 KV
18PASA
       138
              PASADENA 138 KV
18PASA J 138
              PASADENA JCT 138 KV
18PAVI 138
              PAVILLION 138 KV
              PAVILION JCT 138 KV
18PAVI J 138
18PERMT 138
              PERE MARQUETTE 138 KV
18PERMT 345
18PIGNR 138
             PERE MARQUETTE 345 KV
             PIGEON RIVER 138 KV
             PISTON RING 138 KV
18PISTG 138
             PISTON RING JCT 138 KV
18PISTGJ 138
18PLASR 138
             PLASTER 138 KV
18PLYM 1 138
             PLYMOUTH 1 138 KV
18PLYM 2 138
             PLYMOUTH 2 138 KV
18PLYM1G13.8
             PLYMOUTH 1 GENERATOR
18PLYM2G13.8
             PLYMOUTH 2 GENERATOR
             PLYMOUTH 2M 13.8 KV
18PLYM2M13.8
              PLYMOUTH 3 GENERATOR
18PLYM3G13.8
18PLYM4G13.8
              PLYMOUTH 4 GENERATOR
              PLYMOUTH 4M 13.8 KV
18PLYM4M13.8
18PLYM5G13.8
              PLYMOUTH 5 GENERATOR
18PLYM6G13.8 PLYMOUTH 6 GENERATOR
18PLYM6M13.8 PLYMOUTH 6M 13.8 KV
18PLYM7G13.8 PLYMOUTH 7G 13.8 KV
18PLYM8G13.8
             PLYMOUTH 8G 13.8 KV
             PLYMOUTH 9G 13.8 KV
18PLYM9G13.8
              PLYWOOD 138 KV
18PLYWD 138
              PLYWOOD JCT 138 KV
18PLYWDJ 138
              PORTER 138 KV
18PORT 138
18PORT J 138
              PORTER JCT 138 KV
             PORT CALCITE 138 KV
18PORTC 138
             PORT CALCITE G 13.8 KV
18PORTCG13.8
             PORT SHELDON 138 KV
18PORTL 138
18P-R X 138
             P-R AUXILIARY 138 KV
18PROGS 138
             PROGRESS STREET 138 KV
             PROJECT 1 138 KV
18PROJ1 138
18PROJ1G13.8
             PROJECT 1G 13.8 KV
18PRTSH 138
             PORTSMITH 138 KV
18RACET 138
               RACE STREET 138 KV
18RACETJ 138
               RACE ST JCT 138 KV
18RAIS
         138
               RAISIN 138 KV
         138
              RANSOM 138 KV
18RANS
18REDWD 138
             REDWOOD
18RENA1G18.0
               RENAISSANCE 1G 18 KV
              RENAISSANCE 2G 18 KV
18RENA2G18.0
```

```
RENAISSANCE 3G 18 KV
18RENA3G18.0
18RENA4G18.0 RENAISSANCE 4G 18 KV
18RENAS 345 RENAISSANCE 345 KV
18RICEK 138
            RICE CREEK 138 KV
18RIFLV 138
            RIFLE RIVER 138 KV
18RIGG B 138
            RIGGSVILLE B 138 KV
            RIGGSVILLE W 138 KV
18RIGG W 138
18RILEST 138
             RILEY STREET 138 KV
             RIVERVIEW N 138 KV
18RIVE N 138
            RIVERVIEW S 138 KV
18RIVE S 138
            RIVERTON 1 138 KV
18RIVR1 138
18RIVR1J 138 RIVERTOWN 1J 138 KV
18RIVR2 138 RIVERTON 2 138 KV
18RIVR2J 138 RIVERTOWN 2J 138 KV
18ROCKT 138 ROCKPORT 138 KV
18ROED 138
            ROEDEL ROAD 138 KV
18ROED J 138
            ROEDEL JCT 138 KV
            RONDO 138 KV
18ROND 138
18ROOST 345
            ROOSEVELT 345 KV
            SAGINAW RIVER B 138 KV
18SAGR B 138
18SAGR W 138 SAGINAW RIVER W 138 KV
18SAGR1G0.48 SAGINAW RIVER 1 GENERATOR
18SAGR2G0.48 SAGINAW RIVER 2 GENERATOR
18SAGRR 13.8 SAGINAW RIVER 13.8 KV
18SAMA 1 138 SAMARIA 1 138 KV
18SAMA 2 138
            SAMARIA 2 138 KV
18SANDN 138
            SANDERSON 138 KV
18SANDNJ 138
             SANDRSON JCT 138 KV
18SAVIE 138
             SAVIDGE 138 KV
18SAVIEJ 138
             SAVIDGE JCT 138 KV
             SCOTT LAKE 138 KV
18SCOTK 138
18SCRES 138 SOUTH CRYTES 138 KV
18SEAME1 138 SEAMLESS EAST 1 138 KV
18SEAME2 138 SEAMLESS EAST 2 138 KV
18SEAMS 138 SEAMLESS 138 KV
18SEAMSJ 138 SEAMLESS JCT 138 KV
18SIMMS 138 SIMMONS 138 KV
18SIMMSJ 138 SIMMONS JCT 138 KV
18SIMPN 138 SIMPSON 138 KV
            SOLVEY 138 KV
18SOLV
        138
18SPAR1 138
             SPARTAN 1 138 KV
             SPARTAN 2 138 KV
18SPAR2 138
18SPAUG 138 SPAULDING 138 KV
18SPRU 138 SPRUCE ROAD 138 KV
18STAC 138 STACEY 138 KV
18STAC J 138 STACEY JCT 138 KV
18STAMT 138 STAMPING PLANT 138 KV
18STEES 138
             STEEL CASE 138 KV
18STEESJ 138
             STEEL CASE JCT 138 KV
18STERG 138
              STERNBERG 138 KV
              STONEGATE 138 KV
18STONT 138
18STONTT 138
              STONGATE JCT 138 KV
18STOV 138
             STOVER 138 KV
18STROH 138 STRONACH 138 KV
18STROH1 138
              STRONACH 1 138 KV
18SUMM 1 138 SUMMERTON 1 138 KV
```

```
SUMMERTON 2 138 KV
18SUMM 2 138
18TALL 345
             TALLMADGE 345 KV
18TALL A 138
             TALLMADGE A 138 KV
18TALLN 138
             TALLMAN 138 KV
18TALLR1 138
             TALLMADGE R1 138 KV
              TALLMADGE R2 138 KV
18TALLR2 138
18THET 138
              THETFORD 138 KV
18THET1G13.8
              THETFORD
18THET2G13.8
              THETFORD
18THET3G13.8
              THETFORD
18THET4G13.8
              THETFORD
              THETFORD 5M 13.8 KV
18THET5M13.8
18THET7M13.8
              THETFORD 7M 13.8 KV
18THET8G13.8
              THETFORD 78 GENERATOR
              THETFORD 9G 13.8 KV
18THET9G13.8
18THETFR 345
              THETFORD
              THETFORD 138 KV
18THETR 138
18TIHA
        138
              TIHART 138 KV
18TINSN 138
              TINSMAN 138 KV
             TINSMAN JCT 138 KV
18TINSNJ 138
            TIPPY 138 KV
18TIPPA 138
18TIPPAG7.50
            TIPPY AG 7.5 KV
            TIPPY DAM 138 KV
18TIPPAM 138
       138
            TITTABAWASSEE 138 KV
18TITB
             TITTABAWASSEE 345 KV
18TITB
       345
18TOMPKN 345
             TOMPKINS
              TOMPKINS 138 KV
18TOMPN 138
18TROWG 138
              TROWBRIDGE 138 KV
               TROWBRIDGE JCT 138 KV
18TROWGJ 138
18TWILT 138
               TWILIGHT 138 KV
              TWILIGHT JCT 138 KV
18TWILTJ 138
18TWING 138
              TWINING 138 KV
             TWINING 1 138 KV
18TWING1 138
18UPJO 1 138 UPJOHN 1 138 KV
18UPJO 2 138 UPJOHN 2 138 KV
18UPJO 3 138 UPJOHN 3 138 KV
18VANAA 138 VANATTA 138 KV
             VANATTA JCT 138 KV
18VANAAJ 138
18VANDL 138
             VANDERBILT 138 KV
18VERGN 138
18VERGN 345
             VERGENNES 138 KV
              VERGENNES 345 KV
             VERONA B 138 KV
18VERO B 138
18VERO W 138 VERONA W 138 KV
18VESTG 138 VESTABURG 138 KV
            VEVAY 138 KV
18VEVA 138
18VROON 138
             VROOMAN 138 KV
18WACK 1 138
             WACKERLY 1 138 KV
18WACK 2 138
               WACKERLY 2 138 KV
18WARN 138
               WARNER 138 KV
18WARR
         138
               WARREN 138 KV
18WASHA 138
               WASHTENAW 138 KV
18WAYLD 138
               WAYLAND 138 KV
               WEADOCK 23 KV
18WEAD 23.0
               WEADOCK BLUE
18WEAD B 138
18WEAD P13.8
               WEADOCK PEAKER
18WEAD W 138
               WEADOCK WHITE
```

```
18WEAD7G18.0
              WEADOCK UNIT 7
18WEAD8G18.0
              WEADOCK UNIT 8
18WEAL B 138
              WEALTHY B 138 KV
18WEAL W 138
              WEALTHY W 138 KV
18WEALH6 138
              WEALTHY H6 138 KV
18WEXF B 138
              WEXFORD B 138 KV
18WEXF W 138
              WEXFORD W 138 KV
18WHIT 1 138
              WHITE LAKE 1 138 KV
18WHIT 2 138
            WHITE LAKE 2 138 KV
18WHIT B 138 WHITING B 138 KV
18WHIT W 138 WHITING W 138 KV
18WHIT1G14.4
            WHITING 1G 14.4 KV
              WHITING 2G 14.4 KV
18WHIT2G14.4
              WHITING 3G 15.5 KV
18WHIT3G15.5
              WHITE ROAD 138 KV
18WHITD 138
18WHITR 138
              WHITTEMORE 138 KV
18WHTNGA 120
              WHITING
              WILLOW 138 KV
18WILL
        138
18WILLD 138
             WILLARD 138 KV
             WISE 138 KV
18WISE8 138
             WASHTENAW JUNCTION
18WSHTNJ 138
18ZEEL 1 345 ZEELAND 1 345 KV
18ZEEL 2 345 ZEELAND 2 345 KV
18ZEEL1G18.0
            ZEELAND 1G 18 KV
             ZEELAND 2G 18 KV
18ZEEL2G18.0
             ZEELAND 3G 18 KV
18ZEEL3G18.0
             ZEELAND 4G 18 KV
18ZEEL4G18.0
18ZEEL5G18.0
              ZEELAND 5G 18 KV
             ALLISON-BROCK-VENOY
19A-B-VN 120
19A-C-D 120
             Arizona-Collins-Dayton
19ADAMS 120
             ADAMS
19AGSTA1 120
             Aqusta1
19AGSTA2 120
             Augusta
19AGSTAT 120 Agusta Tap
19AIRPT 120 Airport
19AKRON 120
             AKRON
19ALAMO 120
             Alamo
19ALFRD 120
             Alfred
19ALISN 120
             Allison
19ALPHA 120
             Alpha
19ANITA 41.5
             ANITA
19APACE 120
             Apache
19ARCTC 120
             Arctic
19ARIZA 120
             Arizona
19ARWHD 120
             Arrowhead
19ATLAN 120
             Atlanta
19ATLAN 138
             Atlanta
19AUBRN2 120
              Auburn2
19AULEBT 120
              Auburn Heights Tap
19B3N PS 220
              B3N PS
             BAD AXE
19BADAX 120
19BALTC 120
             Baltic
19BAXTR 230
             Baxter
        120
19BECK
              Beck
19BEMIS 120
              Bemis
19BENET 120
              BENNETT
```

```
19BENSN 120
             Benson
19BERGN 120
             Bergen
19BERLN 120
              Berlin
19BFOOT 345
              Blackfoot
19BISMK 120
              BISMARCK
19BISMK 230
              Bismarck
19BISMK 345
             Bismarck
19BLMFD 120
             Bloomfield
19BLMFD 230
             Bloomfield
19BLRP1 26.0
             Belle River PP 1
19BLRP2 26.0 Belle River PP 2
             BELLE RIVER POWER PLANT
19BLRPP 345
19BLRPPP 345
              Belle River PPP (peaker)
19BNSTNN 120
              Brownstown Navarre - Brownstown (Navarre side)
19BNSTNN 230
              Brownstown Navarre - Brownstown (Navarre side)
19BNSTNN 345
              Brownstown Navarre - Brownstown (Navarre side)
19BNSTNS 120
              Brownstown Superior - Brownstown (Superior side)
19BNSTNS 230
              Brownstown Superior - Brownstown (Superior side)
19BNSTNS 345
              Brownstown Superior - Brownstown (Superior side)
19BOYNE 120
              Boyne
19BRAUN 120
              Braun
19BROCK 120
              Brock
19BRONC 120
              Bronco
19BRSTL 120
              Bristol
19BUNCE 120
              Bunce Creek
19BUNCE 220
              Bunce Creek
19BURNS2 120
             Burns 2
19BYRON 41.5
             BYRON
19CANIF 120
             Caniff
19CANIF 345
             Caniff
19CANIFP 120
              CANIFF PHASE SHIFTER
19CARBN 120
              Carbon
19CARBNT 120
             Carbon Tap
19CATO
       120
              Cato
19CC15 15.5
              Connors Creek 15
19CC16 15.5
              Connors Creek 16
19CHTNT 120
              Chestnut
19CICOT 120
              Cicot
19CODY
        120
              Cody
19COLFX 120
              Colfax
19COLFX 41.5
              COLFAX
19COLNS 120
              Collins
19COLRD1 120
              Colorado 1
19COLRD2 120
              Colorado 2
19COOPR 120
              Cooper
19CORTL 120
              Cortland
19COSMO 120
              Cosmo
19COSTP 120
              Cosmo Tap
19CREWD 120
              Crestwood
19CROWN1 120
              Crown1
19CUSTR 120
              Custer
              Coventry - Placid - Wixom Tap
19CV-P-W 120
19CVTRY 120
              Coventry
19CVTRY 345
              Coventry
19CYPRS
        120
               Cypress
19DAYTN 120
               Dayton
```

```
19DAYTN 41.5
             DAYTON
             Dean 12
19DEAN12 120
            Dean 34
19DEAN34 120
             Diesel
19DIESL 120
        230
19DIG
             Diq
19DIGIA 41.5
             DIGIA
19DIGTP 230
            Dig Tap
19DORST 120
             Dorsett
19DRAKE 120
             DRAKE
19DREXL 120
              Drexel
19DUVAL1 120
             Duvall 1
19DUVAL2 120
            Duvall 2
19DUVLT1 120 Duvall Tap 1
              Duvall Tap 2
19DUVLT2 120
19ELM
        120
             Elm
19ELM
      41.5
             Elm41.6
19ELMTP 230 Elm Tap
19ENFPP 120 ENRICO FERMI POWER PLANT
19ENFPP 345
             ENRICO FERMI POWER PLANT
             Fermi 2
19ENFPP 22.0
       120
             Erin
19ERIN
19ESSEX 120
            Essex Bus (Conners Creek Power Plant High Side)
19ESSEX 24.0 ESSEX
19EVRGN 120 Evergreen
19EXPLR1 120
            Explorer 1
19EXPLR2 120
            Explorer 2
19FAWN
       120
             Fawn
19FLINT 120
             Flint
19FLMRE1 120
             Filmore 1
             Filmore 2
19FLMRE2 120
19FMTEC1 120
              Formtech 1
19FMTEC2 120
              Formtech 2
19FNDRY 120
              Foundry
19FRISB 120 Frisbie
19GDNGS1 120 Gidings1
19GDNGS2 120 Gidings2
19GENDY 120
            Gendy
19GENOA 120
              Genoa
19GENOA 138
              Genoa
19GOLF1 120
              Golf 1
19GOLF2 120
              Golf 2
             Grayling 1
19GRAYL1 120
19GRAYL2 120 Grayling 2
19GRAYLT 120 Grayling Tap
19GRLSM 120 Great Lakes M
19GRNEC 120 Greenwood Energy Center
                                       (unit 1)
19GRNEC 345 Greenwood Energy Center
                                       (unit 1)
19GRNEC 26.0 Greenwood
19GRNECP 345
            GreenwoodP (peaker)
19HAGER 120
             Hager
19HAMLN 120
              Hamlin
19HANCK 120
              Hancock
                      (high side peaker site)
19HANCK 41.5
              HANCOCK
19HBHPP 120
             HARBOR BEACH POWER PLANT
19HBHPP 13.8 Harbor Beach PP
19HBHPPP 120
             Harbor Beach PPP (peaker)
```

```
19HINES 120
              Hines
19HINES 230
              Hines
19HOSTN1 120
              Houston1
19HOSTN2 120
              Houston2
19HUNTC 120
              Hunters Creek
19HURHY 41.5
              Huron Hydro
19IMPMP1 120
              Imlay Pumping 1
              Imlay Pumping 2
19IMPMP2 120
              Ironton - Navarre - Riverview Tap
19I-N-RV 120
19IRNTN 120
              Ironton
19JACOB 120
              Jacob120
              Jefferson
19JEFSN 120
19JEWEL 120
              Jewel
19JEWEL 345
              Jewell
19JEWEL3 230
              Jewel 3
19JSLYN 120
              Joslyn
19JUDD
        120
              Judd
19JUDD1 13.2
              Judd #1
             Judd #2
19JUDD2 13.2
             Judd #3
19JUDD3 13.2
19JUDD4 13.2
             Judd #4
19JUPTR 120
             Jupiter
19KERN1 120
             Kern 1
              Kern 2
19KERN2 120
19KILGR 120
              Kilgor
19KNTKY 120
              Kentucky
19KOPNK 120
              Koppernick
19LAPER 120
              Lapeer
        120
              Lark
19LARK
        138
              Lark
19LARK
              Lebaron 1
19LEBAR1 120
             Lebaron 2
19LEBAR2 120
        120
             Lee
19LEE
19LEVAN 120
              Levan
19LHPMP1 120
              Lake Huron Pumping 1
19LHPMP2 120
              Lake Huron Pumping 2
19LHPMPT 120
              Lake Huron Pumping Tap
         120
              Lily
19LILY
             Lincoln
19LINCN 120
19LNGLK1 120
             Long Lake 1
             Long Lake 2
19LNGLK2 120
             Lincoln - Northeast - Northwest Tap
19L-N-NW 120
19LOGAN1 120
             Logan 1
19LOGAN2 120
               Logan 2
              Lulu site (now Majestic-Allen Jct-Monroe 3&4 tap)
19LULU
         345
19LUZON 120
               LUZON
19MACK
         120
               Mack
19MACMB 120
               Macomb
              Madrid
19MADRD 120
19MADRD 345
              Madrid
             Majestic
19MAJTC 345
             Mallard
19MALRD 120
19MALTA1 120
              Malta 1
19MALTA2 120
              Malta 2
19MALTA3 120
              Malta 3
19MARON 120
              Marion
```

```
19MAXWL1 120
             Maxwell 1
19MAXWL2 120
            Maxwell 2
19MCALY1 120
            Mcauley 1
19MCALY2 120
            Mcauley 2
19MEDNA 120
             Medina
19MENLO
       120
              Menlo
19MIDTN 120
             Midtown
19MOHIC1 120
             Mohican 1
            Mohican 2
19MOHIC2 120
            Monroe 1
19MON1 26.0
19MON12 345 Monroe Power Plant - units 1 & 2
19MON12P 345 Monroe PPP(peaker)
19MON2 26.0 Monroe 2
19MON3 26.0
             Monroe 3
19MON34 345
              Monroe Power Plant - units 3 & 4
19MON4 26.0
             Monroe 4
19MONPP 120
             MONROE POWER PLANT
19MONTC 120
             Montcalm
19MOPAR 120
             Mopar
19MRY7 14.0
              Marysville 7
19MRY8 14.4
            Marysville 8
19MRYPP 120
            MARYSVILLE POWER PLANT
19MUSTG1 120
            Mustang 1
19MUSTG2 120
            Mustang 2
19NAVAR 120
             Navarre
19NAVAR 230
              Navarre
19NBURG 120
              Newburgh
             Northeast (peaker site - 120kV)
19NEAST 120
            Northeast
19NEAST 230
19NEAST 24.0 Northeast (peaker site - 24kV)
19NEASTS 120 Northeast Stub
19NILES 120 Niles
19NILEST 120 Niles Tap
19NOBLE 120 Noble
19NOLAN 120
             Nolan
19NSTAR1 120
             North Star
             Northwest
19NWEST 120
190AKLY 120
             Oakley
190KRDG3 120
             Oakridge3
190KRDG4 120
            Oakridge4
190LIVR 41.5
             OLIVER
             Ottawa
190TAWA 120
190TSGO 120
             Otsego120
19PERU
        120
             Peru
19PHENX 120
             Phoenix
19PIONR 120
             PIONEER
19PLACD 120
             Placid
19PLACD 345
              Placid
19PLACD 41.5
              PLACID
19POLRS 120
             Polaris
             Pontiac
19PONTC 345
19PONTC1 230
             Pontiac
19PONTC2 120
             Pontiac2
19PONTC3 120
             Pontiac
19POPLR 120
              Poplar
19POPLRT 120
              Poplar Tap
```

```
19PRAXR 120
            Praxair
19PRIZM 120
             Prizm
            PROUD
19PROUD 120
19PRZTP 120 Prizm Tap
19PUTNM 41.5 PUTNAM
19QUAKR 120 Quaker site (now Hancock-Drexel-Sunset tap)
19QUAKR 345 Quaker site (now Hancock-Drexel-Sunset tap)
19QUATP 345 QUAKER TAP
19RAMVL1 120
            Ramville 1
19RAMVL2 120
            Ramville 2
19RANGR 120
             Ranger
19REDRN 120
             Red Run
19REDRN 230
            Red Run
19REMER1 120
             REMER
19REMER2 120 Remer 2
19RESRC 120 Resource (City of Detroit waste to energy plant)
19ROBIN 120 Robin
            Romulus
19ROMLS 120
19ROTUN 230 Rotunda
            Rouge Power Plant
                               Unit 1 (mothballed)
        120
19RR1
             Rouge Power Plant Unit 2
19RR2
        120
19RR3
        120
             Rouge Power Plant unit 3
       120
            Rouge Power Plant EQUALIZER bus
19RREQ
19RRG1 18.0 River Rouge 1
19RRG2 18.0 River Rouge 2
19RRG3 18.0 River Rouge 3
19RUSH 120 RUSH
19RVRVW 120 Riverview
19SANDU 120
            SANDUSKY
19SATRN 120
            Saturn
19SC1 15.5
            St. Clair 1
19SC123 120
            St.Clair 1,2,3 -St.Clair Power Plant units 1,2&3
19SC123P 120
             St. Clair (peaker)
            St. Clair 2
19SC2
      15.5
19SC3
       15.5 St. Clair 3
       15.5 St. Clair 4
19SC4
19SC45 120 St.Clair 4&5 - St.Clair Power Plant units 4 & 5
19SC6
       120 St. CLAIR 6
19SC6 18.0 St. Clair 6
19SC7 18.0 St. Clair 7
19SEASD 120 Seaside
19SENCA 120
            Seneca
19SEVLE1 120
             Seville 1
19SEVLE2 120
            Seville 2
19SHELD 120 Sheldon
19SHELDT 120 Sheldon Tap
19SHOAL 120 Shoal
19SKYLK1 120 Skylark 1
19SKYLK2 120 Skylark 2
19SLKRK 120
            Selkirk
19SLOAN 120
            SLOAN
19SLOCM 24.0
             SLOCUM
19SNSET 120
              Sunset
19SOFLD 120
             Southfield
19SPKNE 120
              Spokane
19SPORT1 120
             Sport 1
```

```
19SPORT2 120
              Sport 2
19SPRUC 120
              Spruce
19S-SP-J 120
              St. CLAIR-SPOKANE-JEWELL
19STANT 120
              St.Antoine
19STCPP 220
              St. Clair
             St. CLAIR POWER PLANT
19STCPP 345
19STEPH 120
             Stephens
19STEPH 230
              Stephens
19STEPH 345
              Stephens
19STERL 120
              Sterling
19STERL 230
             Sterling
19STOGA 345
             Saratoga345
19STRFD 120
              Stratford
19SUMTR 120
              Sumpter
19SUNBD
        120
              Sunbird
19SUPER 120
              Superior
19SUPER 41.5
              SUPERIOR
19SWANC 120
             Swan Creek
19S-WR-W 120 Superior - Willow Run - Wayne Tap
19TAMRK 120 Tamarack
19TAMRKT 120
              Tamarack Tap
19TANDM 120
              Tandem
19TARUS 120
              Taurus
19TAYLR1 120
              Taylor 1
19TAYLR2 120
              Taylor 2
              Trenton Channel 7
19TC7
      15.5
             TRENTON CHANNEL 79
19TC79
       120
        120 TRENTON CHANNEL 8
19TC8
     15.5 Trenton Channel 8
19TC8
19TC9
      22.0 Trenton Channel 9
19TCOLA 120
             Tuscola
19TEMPS 120
             Tempest
19TINKN1 120
             Tieken 1
19TINKN2 120
             Tieken 2
19TOPAZ1 120
              Topaz 1
19TOPAZ2 120
              Topaz 2
19TOWN1 120
              Town 1
19TOWN2 120
             Town 2
19TROY
        120
             Troy
19TULSA 120 Tulsa
19VENOY 120
            Venoy
19VICTR 120
             VICTOR
19VNDYK1 120
              Van Dyke 1
19VNDYK2 120
              Van Dyke 2
19VOYAG 120
              Voyager
19WABSH 120
              Wabash
19WALTN 120
              Walton
19WALTZ 41.5
              Waltz
             Warren
19WAREN 120
19WAREN 230
             Warren
19WARENS 120
              Warren Stub
19WAYER 41.5
              WAYER
19WAYNE 120
              Wayne
19WAYNE 230
              Wayne
19WAYNE 345
              Wayne
19WDHVN1 120
              Woodhaven 1
```

```
19WDHVN2 120
              Woodhaven 2
19WHELR 120
               Wheeler
19WHITR1 120
              Whittier 1
19WHITR2 120
             Whittier 2
19WILMT 41.5
             WILMOT
19WIXOM 120
             Wixom
19WIXOM 345
             Wixom
19WLRUN 120
             Willow Run
19WTRMN 120
             Waterman
19WTRMN 230
              Waterman
19WYNS6 120
              City of Wyandotte, Sub 6
19WYOMG1 120
               Wyoming 1
19WYOMG2 120
               Wyoming 2
        120
             Yost
19YOST
19YUMA
         120
             Yuma
19ZACRY 120 Zachary
19ZEBRA 120 Zebra
         120 Zuq B
19ZUGB
        69.0 3M SUBSTATION 69 KV BUS
203M
20AIRP R69.0 AIRPORT ROAD SUBSTATION 69 KV BUS 20ALBANY69.0 ALBANY SUBSTATION 69 KV BUS
20ALCAN 69.0 ALCAN SUBSTATION 69 KV BUS
20ANNVLJ69.0 ANNVILLE JUNCTION 69 KV TAP POINT
20ARGTM 138 ARGENTUM SUBSTATION 138 KV BUS
20ARGTM 69.0 ARGENTUM SUBSTATION 69 KV BUS
20ASAHIJ69.0 ASAHI JUNCTION 69 KV TAP POINT
         138 AVON SUBSTATION 138 KV BUS
20AVON
         345 AVON SUBSTATION 345 KV BUS
20AVON
20BACONJ69.0 BACON CREEK JUNCTION 69 KV TAP POINT
20BALLRD69.0 BALLARD SUBSTATION 69 KV BUS
20BARDSJ69.0 BARDSTOWN JUNCTION 69 KV TAP POINT
20BARREN 161 BARREN COUNTY SUBSTATION 161 KV BUS
20BARREN69.0 BARREN COUNTY SUBSTATION 69 KV BUS
               BARREN COUNTY SUBSTATION 161 KV BUS
20BASS 69.0 BASS SUBSTATION 69 KV BUS
20BAVARI 138 BAVARIAN SUBSTATION 138 KV BUS
20BEAM J69.0 BEAM JUNCTION 69 KV NODE
20BEATTY69.0 BEATTYVILLE EKPC SWITCHING SUBSTATION 69 KV
20BIGB J69.0 BIG BONE JUNCTION 69 KV TAP POINT
20BKR LN69.0 BAKER LANE SUBSTATION 69 KV BUS
20BLEV T69.0 BLEVINS VALLEY SUBSTATION 69 KV TAP POINT
20BLEV V69.0 BLEVINS VALLEY SUBSTATION 69 KV BUS
              BULLITT COUNTY SUBSTATION 161 KV BUS
20BLIT C 161
              BULLITT COUNTY SUBSTATION 69 KV BUS
20BLIT C69.0
20BLMFLD69.0
               BLOOMFIELD SUBSTATION 69 KV BUS
              BONDS MILL JUNCTION 69 KV TAP POINT
20BNDSMJ69.0
              BONNIEVILLE EKPC SUBSTATION 69 KV BUS
20BONNIE69.0
               BOONE SUBSTATION 138 KV BUS
20BOONE 138
20BOONE 69.0
               BOONE SUBSTATION 69 KV BUS
20BOONEV69.0
               BOONEVILLE SUBSTATION 69 KV BUS
20BOONSB 138
               BOONESBORO NORTH KU SUBSTATION 138 KV
20BOONST 138
               BOONESBORO NORTH KU SUBSTATION 138 KV TAP POINT
               BOONEVILLE JUNCTION 69 KV TAP POINT
20BOONVJ69.0
               BOSTON KU SUBSTATION 69 KV BUS
20BOSTKU69.0
               BOSTON JUNCTION 69 KV NODE
20BOSTNJ69.0
               BOURNE 69 KV NODE
20BOURNE69.0
               BOWEN SUBSTATION 69 KV BUS
20BOWEN 69.0
```

```
BRACKEN COUNTY SWITCHING SUBSTATION 69 KV
20BRACKN69.0
20BRISTW69.0
              BRISTOW SUBSTATION 69 KV BUS
             BRODHEAD SUBSTATION 69 KV BUS
20BRODHD69.0
20BRONSJ69.0 BRONSTON JUNCTION 69 KV TAP POINT
20BTYV D69.0 BEATTYVILLE DISTRIBUTION SUBSTATION 69 KV BUS
20BTYVL 161 BEATTYVILLE SUBSTATION 161 KV BUS
20BURKSJ69.0 BURKESVILLE JUNCTION 69 KV NODE
20BWELLS69.0 BILL WELLS SUBSTATION 69 KV BUS
20BWELSJ69.0 BILL WELLS JUNCTION 69 KV TAP POINT
20CABN H69.0 CABIN HOLLOW SUBSTATION 69 KV BUS
20CAMPTN69.0 CAMPTON SUBSTATION 69 KV BUS
20CARTCJ69.0 CARTER CITY JUNCTION 69 KV TAP POINT
20CASEYC 161 CASEY COUNTY SUBSTATION 161 KV BUS
20CASEYC69.0 CASEY COUNTY SUBSTATION 69 KV BUS
20CEDRGR69.0 CEDAR GROVE SUBSTATION 69 KV BUS
20CHAPLJ69.0 CHAPLIN JUNCTION 69 KV TAP POINT
20CHARTR69.0 CHARTERS SUBSTATION 69 KV BUS
20CLAY V69.0 CLAY VILLAGE SUBSTATION 69 KV BUS
20CLAYCJ69.0 CLAY CITY JUNCTION 69 KV TAP POINT
20CLAYLJ69.0 CLAY LICK SUBSTATION 69 KV TAP POINT
20COBURG69.0 COBURG SUBSTATION 69 KV BUS
20COBURJ69.0 COBURG JUNCTION 69 KV TAP POINT
             COLESBURG JUNCTION 69 KV TAP POINT
20COLESJ69.0
20COLKU169.0 COLUMBIA KU #1 SUBSTATION 69 KV BUS
20COLKU269.0 COLUMBIA KU #2 SUBSTATION 69 KV BUS
20COLMSV69.0 COLEMANSVILLE SUBSTATION 69 KV BUS
20COLUMB69.0 COLUMBIA SUBSTATION 69 KV BUS
20COOPER 161 COOPER SUBSTATION 161 KV BUS
20COOPER69.0 COOPER SUBSTATION 69 KV BUS
20CPR1 13.8 COOPER STATION UNIT 1 13.8 KV BUS
20CPR2 20.0 COOPER STATION UNIT 2 20 KV BUS
20CRESTN69.0 CRESTON SUBSTATION 69 KV BUS
20CRNSTN 138 CRANSTON SUBSTATION 138 KV BUS
             CROCKETT JUNCTION 69 KV TAP POINT
20CROCKJ69.0
20CROOKJ69.0 CROOKSVILLE JUNCTION 69 KV TAP POINT
20CYNTH 69.0 CYNTHIANA EKPC SUBSTATION 69 KV BUS
20DALE 138 DALE SUBSTATION 138 KV BUS
20DALE 69.0 DALE SUBSTATION 69 KV BUS
20DALE1 13.8 DALE STATION UNIT 1 13.8 KV BUS
20DALE2 13.8 DALE STATION UNIT 2 13.8 KV BUS
20DALE3 13.8 DALE STATION UNIT 3 13.8 KV BUS
20DALE4 13.8 DALE STATION UNIT 4 13.8 KV BUS
20DARWJ 161 DARWIN THOMAS JUNCTION 161 KV TAP POINT
20DAVIS 69.0 DAVIS SUBSTATION 69 KV BUS
20DENNY 161 DENNY SUBSTATION 161 KV BUS
20DENNY 69.0 DENNY SUBSTATION 69 KV BUS
20DEVON 69.0 DEVON SWITCHING SUBSTATION 69 KV
20DOWNG 69.0 DOWNING SUBSTATION 69 KV BUS
20DURO J69.0 DURO JUNCTION 69 KV TAP POINT
20E BARD69.0 EAST BARDSTOWN SUBSTATION 69 KV BUS
20E PNKT69.0 EAST PINE KNOT SUBSTATION 69 KV BUS
20E SOMJ69.0 EAST SOMERSET SUBSTATION 69 KV TAP POINT
20EAG3 18.0 SPURLOCK STATION E.A. GILBERT UNIT 3 18 KV BUS
20EBERLE69.0
              EBERLE SUBSTATION 69 KV BUS
20EBERLJ69.0 EBERLE JUNCTION 69 KV TAP POINT
20EBRNST69.0 EAST BERNSTADT EKPC SUBSTATION 69 KV BUS
```

```
ELLIOTT COUNTY PRISON JUNCTION 69 KV TAP POINT
20ELL PJ69.0
20ELLTVL69.0
              ELLIOTTVILLE SUBSTATION 69 KV BUS
              EKPC ELIZABETHTOWN #1 SUBSTATION 69 KV BUS
20ETOWN169.0
20ETOWN269.0
              EKPC ELIZABETHTOWN #2 SUBSTATION 69 KV BUS
20F OAKJ69.0
              FOUR OAKS JUNCTION 69 KV TAP POINT
             FOUR OAKS SUBSTATION 69 KV BUS
20F OAKS69.0
20FALCON69.0 FALCON EKPC SUBSTATION 69 KV BUS
20FALLRK 161
            FALL ROCK SUBSTATION 161 KV BUS
20FALLRK69.0 FALL ROCK SUBSTATION 69 KV BUS
20FALMKU69.0 FALMOUTH KU SUBSTATION 69 KV BUS
20FAWKES 138 FAWKES EKPC SUBSTATION 138 KV BUS
20FAYETT 138 FAYETTE SUBSTATION 138 KV BUS
20FAYETT69.0
              FAYETTE SUBSTATION 69 KV BUS
20FLEMBG 138
              EKPC FLEMINGSBURG SUBSTATION 138 KV BUS
20FLOYD 69.0
              FLOYD SUBSTATION 69 KV BUS
20FLY-SF69.0
              FLOYD-SOUTH FLOYD 69 KV TAP POINT
20FOXHOL 161
              FOX HOLLOW SUBSTATION 161 KV BUS
20FOXHOL69.0
              FOX HOLLOW SUBSTATION 69 KV BUS
20FRCKBJ69.0
              FREDRICKSBURG JUNCTION 69 KV TAP POINT
20FRNCHB69.0
              FRENCHBURG SUBSTATION 69 KV BUS
20FRTKNJ69.0
              FORT KNOX JUNCTION 69 KV TAP POINT
20FRTKNX69.0 FORT KNOX SUBSTATION 69 KV BUS
20GALTN 138
              GALLATIN COUNTY SUBSTATION 138 KV BUS
20GAPOFJ69.0
              GAP OF RIDGE JUNCTION 69 KV TAP POINT
20GARRC069.0
              GARRARD COUNTY SUBSTATION 69 KV BUS
20GLENDL69.0
              GLENDALE SUBSTATION 69 KV BUS
20GODDC169.0
              GODDARD CAPACITOR BANK #1 69 KV BUS
20GODDC269.0 GODDARD CAPACITOR BANK #2 69 KV BUS
20GODDRD 138 GODDARD EKPC JUNCTION 138 KV TAP POINT
20GODDRD69.0 GODDARD EKPC SUBSTATION 69 KV BUS
20GOODNT69.0 GOODNIGHT SUBSTATION 69 KV BUS
20GORINJ69.0 GORIN PARK JUNCTION 69 KV TAP POINT
20GRAYSN69.0 GRAYSON AEP JUNCTION 69 KV TAP POINT
20GREENC 161 GREEN COUNTY SUBSTATION 161 KV BUS
              GREEN COUNTY SUBSTATION 69 KV BUS
20GREENC69.0
20GRIFFJ69.0
              GRIFFIN JUNCTION 69 KV TAP POINT
20GRIFFN69.0
              GRIFFIN SUBSTATION 69 KV BUS
20GRNBR 69.0
              GREENBRIAR SUBSTATION 69 KV BUS
              GREENBRIAR JUNCTION 69 KV TAP POINT
20GRNBRJ69.0
20GRNHLJ 161
              GREEN HALL JUNCTION 161 KV TAP POINT
20GRNTLK69.0
              GRANTS LICK SUBSTATION 69 KV BUS
20GRSBRG69.0
              GREENSBURG SUBSTATION 69 KV BUS
20HARGTJ69.0
              HARGETT JUNCTION 69 KV TAP PINT
              HORSE CAVE KU SUBSTATION 69 KV BUS
20HCAVKU69.0
20HDQTRS69.0
              HEADQUARTERS SUBSTATION 69 KV BUS
20HEBRON 138
              HEBRON SUBSTATION 138 KV BUS
              HELECHAWA SUBSTATION 69 KV BUS
20HELCHW69.0
20HICK P69.0
              HICKORY PLAINS SUBSTATION 69 KV BUS
20HIGHLD69.0
              HIGHLAND SUBSTATION 69 KV BUS
              HIGH ROCK SUBSTATION 69 KV BUS
20HIGHRK69.0
20HILDA 69.0
              HILDA SUBSTATION 69 KV BUS
20HILLSB69.0
              HILLSBORO SUBSTATION 69 KV BUS
              HODGENVILLE EKPC SUBSTATION 69 KV BUS
20HODGEN69.0
20HOLLWJ69.0
              HOLLOWAY JUNCTION 69 KV NODE
20HOLLWY69.0
              HOLLOWAY SUBSTATION 69 KV BUS
20HOPE 69.0
              HOPE SUBSTATION 69 KV BUS
```

```
H.T. ADAMS JUNCTION 69 KV TAP POINT
20HTADMJ69.0
20HTADMS69.0
              H.T. ADAMS SUBSTATION 69 KV BUS
             HUNT #1 69 KV NODE
20HUNT1 69.0
20HUNT2 69.0 HUNT #2 69 KV NODE
20HUNTFJ69.0 HUNT FARM JUNCTION 69 KV TAP POINT
20INDEX 69.0 INDEX EKPC SUBSTATION 69 KV BUS
20INDEXJ69.0 INDEX JUNCTION 69 KV TAP POINT
20INLD C 138 INLAND CONTAINER SUBSTATION 138 KV BUS
20JACKVJ 138 JACKSONVILLE JUNCTION 138 KV TAP POINT
20JBGALJ69.0 J.B. GALLOWAY JUNCTION 69 KV TAP POINT
20JEFFVL69.0
             JEFFERSONVILLE SUBSTATION 69 KV BUS
             JELLICO CREEK JUNCTION 69 KV TAP POINT
20JELLCJ69.0
20JELLCR69.0 JELLICO CREEK SUBSTATION 69 KV BUS
20JKCT1 13.8 J.K. SMITH STATION COMB. TURBINE 1 13.8 KV BUS
20JKCT2 13.8 J.K. SMITH STATION COMB. TURBINE 2 13.8 KV BUS
20JKCT3 13.8 J.K. SMITH STATION COMB. TURBINE 3 13.8 KV BUS
              J.K. SMITH STATION COMB. TURBINE 4 13.8 KV BUS
20JKCT4 13.8
20JKCT5 13.8 J.K. SMITH STATION COMB. TURBINE 5 13.8 KV BUS
20JKCT6 13.8 J.K. SMITH STATION COMB. TURBINE 6 13.8 KV BUS
20JKCT7 13.8 J.K. SMITH STATION COMB. TURBINE 7 13.8 KV BUS
             J.K. SMITH STATION COMB. TURBINE 8 13.8 KV BUS
20JKCT8 13.8
             J.K. SMITH STATION COMB. TURBINE 9 13.8 KV BUS
20JKCT9 13.8
20JKCTA 13.8 J.K. SMITH STATION COMB. TURBINE 10 13.8 KV BUS
20JKCTB 13.8 J.K. SMITH STATION COMB. TURBINE 11 13.8 KV BUS
20JKCTC 13.8 J.K. SMITH STATION COMB. TURBINE 12 13.8 KV BUS
20JKCTD 13.8 J.K. SMITH STATION COMB. TURBINE 13 13.8 KV BUS
20JKCTE 13.8 J.K. SMITH STATION COMB. TURBINE 14 13.8 KV BUS
20JKSMIT 138 J.K. SMITH SUBSTATION 138 KV BUS
20JKSMIT 345 J.K. SMITH SUBSTATION 345 KV BUS
20JKSMIT69.0 JK SMITH DIST. SUBSTATION 69 KV BUS
              JAMESTOWN JUNCTION 161 KV TAP POINT
20JMSTNJ 161
20JNYWLJ69.0
              JENNY WILEY JUNCTION 69 KV TAP POINT
20JTCH T69.0
              JOE TICHENOR SUBSTATION 69 KV TAP POINT
20JTCHNR69.0 JOE TICHENOR SUBSTATION 69 KV BUS
20KARGLE69.0 KARGLE SUBSTATION 69 KV BUS
20KEAVJ169.0 KEAVY SUBSTATION 69 KV TAP POINT #1
20KEAVJ269.0 KEAVY SUBSTATION 69 KV TAP POINT #2
20KEAVY 69.0 KEAVY SUBSTATION 69 KV BUS
20KEITH 69.0 KEITH SUBSTATION 69 KV BUS
20KNOBLK69.0 KNOB LICK SUBSTATION 69 KV BUS
20LAURHY13.8 LAUREL HYDRO UNIT 13.8 KV BUS
20LAURIJ69.0 LAUREL INDUSTRIAL JUNCTION 69 KV TAP POINT
20LAURLC 161
              LAUREL COUNTY SUBSTATION 161 KV BUS
20LAURLC69.0 LAUREL COUNTY SUBSTATION 69 KV BUS
20LAURLD 161 LAUREL HYDRO SUBSTATION 161 KV BUS
20LEBANJ69.0 LEBANON JUNCTION 69 KV TAP POINT
20LEESLK69.0 LEES LICK SUBSTATION 69 KV BUS
20LEON 69.0 LEON EKPC SUBSTATION 69 KV BUS
20LIBCHJ69.0 LIBERTY CHURCH JUNCTION 69 KV TAP POINT
20LIBERT 161 LIBERTY JUNCTION SUBSTATION 161 KV BUS
20LIBERT69.0
             LIBERTY JUNCTION SUBSTATION 69 KV BUS
20LIBTKU69.0
              LIBERTY KU SUBSTATION 69 KV BUS
20LNCSTR69.0
              LANCASTER EKPC SUBSTATION 69 KV BUS
              EKPC LONDON SUBSTATION 161 KV BUS
20LONDON 161
               EKPC LONDON SUBSTATION 69 KV BUS
20LONDON69.0
              LORETTO SUBSTATION 69 KV BUS
20LORETT69.0
```

```
20LOVEHY 138
             LOVE HYDRO STATION 138 KV BUS
20LOVEHY4.16
             LOVE HYDRO STATION 4.16 KV BUS
              LOW GAP SUBSTATION 69 KV TAP POINT
20LOWGPT69.0
              LYMAN B. WILLIAMS JUNCTION 69 KV TAP POINT
20LYMANJ69.0
20MAGGRD69.0
              MAGGARD SUBSTATION 69 KV BUS
             MAGNOLIA SUBSTATION 69 KV BUS
20MAGNOL69.0
             MAGOFFIN COUNTY SWITCHING SUBSTATION 69 KV
20MAGOFN69.0
20MAPLSJ69.0 MAPLESVILLE JUNCTION 69 KV TAP POINT
20MAR IJ 161 MARION CO IND PARK JUNCTION 161 KV TAP POINT
20MARETB69.0 MARETBURG SUBSTATION 69 KV BUS
            MARETBURG JUNCTION 69 KV TAP POINT
20MARETJ69.0
20MARIBJ69.0
             MARIBA JUNCTION 69 KV TAP POINT
             MARION COUNTY SUBSTATION 161 KV BUS
20MARION 161
              MAYSVILLE INDUSTRIAL JUNCTION 138 KV TAP POINT
20MAYSVJ 138
20MAYTNJ 138
             MAYTOWN JUNCTION SUBSTATION 138 KV BUS
             MAYTOWN JUNCTION 69 KV TAP POINT
20MAYTNJ69.0
20MAYTWN69.0
             MAYTOWN SUBSTATION 69 KV BUS
20MAZIE 69.0
             MAZIE SUBSTATION 69 KV BUS
20MCCRE 69.0
            MCCREARY COUNTY SUBSTATION 69 KV BUS
20MCKEE 69.0
            MCKEE SUBSTATION 69 KV BUS
20MCKNYJ69.0
             MCKINNEY'S CORNER JUNCTION 69 KV TAP POINT
20MCKVKU69.0
             MACKVILLE KU SUBSTATION 69 KV BUS
             MIDDLE CREEK JUNCTION 69 KV TAP POINT
20MDLCKJ69.0
              MILLERSBURG SUBSTATION 69 KV BUS
20MILBRG69.0
              MILLERSBURG-CARLISLE JUNCTION 69 KV NODE
20MIL-CJ69.0
             MANCHESTER EKPC SWITCHING SUBSTATION 69 KV
20MNCHST69.0
             MONTICELLO EKPC SUBSTATION 69 KV BUS
20MONTIC69.0
20MONTVA69.0 MONTICELLO TVA SUBSTATION 69 KV BUS
20MRCR 169.0 MERCER COUNTY IND. SUBSTATION 69 KV BUS
20MT OLJ69.0 MOUNT OLIVE JUNCTION 69 KV TAP POINT
20MT OLV69.0 MOUNT OLIVE SUBSTATION 69 KV BUS
20MUNFKU69.0 MUNFORDVILLE KU SUBSTATION 69 KV BUS
20MUNFVL69.0 MUNFORDVILLE EKPC SUBSTATION 69 KV BUS
            MUNK SUBSTATION 69 KV BUS
20MUNK 69.0
             MUNK JUNCTION 69 KV TAP POINT
20MUNK J69.0
              MURPHYSVILLE SUBSTATION 69 KV BUS
20MURPHY69.0
20N SPR 69.0
              NORTH SPRINGFIELD SUBSTATION 69 KV BUS
20NANCY 69.0
              NANCY SUBSTATION 69 KV BUS
20NCASTL69.0
              NEW CASTLE SUBSTATION 69 KV BUS
              NICHOLASVILLE EKPC SUBSTATION 69 KV BUS
20NCHLSV69.0
20NELSON69.0
              NELSON COUNTY SUBSTATION 69 KV BUS
20NEWBY169.0
              NEWBY SUBSTATION 69 KV BUS NO.1
              NEWBY #2 69 KV NODE
20NEWBY269.0
              NEWFOUNDLAND SUBSTATION 69 KV BUS
20NEWFND69.0
              NELSON VALLEY JUNCTION 69 KV TAP POINT
20NLSNVJ69.0
              NORWOOD SUBSTATION 69 KV BUS
20NORWD 69.0
20NORWDJ69.0
              NORWOOD JUNCTION 69 KV NODE
              NORWOOD EKPC-KU 69 KV N.O. TIE POINT
20NRWDKU69.0
200AKD J69.0 OAKDALE JUNCTION 69 KV TAP POINT
200AKH J69.0 OAK HILL JUNCTION 69 KV TAP POINT
200KLY N69.0 OAKLEY NOEL SUBSTATION 69 KV BUS
200WEN C69.0 OWEN COUNTY SUBSTATION 69 KV BUS
200WENJ169.0 OWEN COUNTY JUNCTION 69 KV TAP POINT 1
```

OWENS ILLINOIS SUBSTATION 69 KV TAP POINT

OWINGSVILLE KU SUBSTATION 69 KV BUS

PARIS KU SUBSTATION 138 KV BUS

200WNSIJ69.0

200WVLKU69.0

20PARIS 138

```
20PARISJ 138 PARIS KU SUBSTATION 138 KV TAP POINT
20PARKWY69.0 PARKWAY SUBSTATION 69 KV BUS
20PATTRJ69.0 PATTON ROAD JUNCTION 69 KV NODE
20PCTLSJ69.0 PACTOLUS JUNCTION 69 KV TAP POINT
20PEASTK69.0 PEASTICKS SUBSTATION 69 KV BUS
20PELFRE69.0 PELFREY SUBSTATION 69 KV BUS
20PENN 69.0 PENN SUBSTATION 69 KV BUS
20PERRVL69.0 PERRYVILLE SUBSTATION 69 KV BUS
20PEYTON69.0 PEYTONS STORE SUBSTATION 69 KV BUS
20PHIL 69.0 PHIL SUBSTATION 69 KV BUS
20PINEGJ69.0 PINE GROVE JUNCTION 69 KV TAP POINT
20PITTSB 161 PITTSBURG KU SUBSTATION 161 KV BUS
20PLSGRV69.0 PLEASANT GROVE SUBSTATION 69 KV BUS
20PLUMV 138 PLUMVILLE SUBSTATION 138 KV BUS
20PLUMV 69.0
              PLUMVILLE SUBSTATION 69 KV BUS
20PNKNOT69.0 PINE KNOT SUBSTATION 69 KV BUS
20POWELL 138 POWELL COUNTY SUBSTATION 138 KV BUS
20POWELL 161 POWELL COUNTY SUBSTATION 161 KV BUS
20POWELL69.0 POWELL COUNTY SUBSTATION 69 KV BUS
20PPG 69.0 P.P.G SUBSTATION 69 KV BUS
20PPG J 69.0 P.P.G JUNCTION 69 KV TAP POINT
20PRSTNJ69.0 PRESTON JUNCTION 69 KV TAP POINT
20PULASJ 161 PULASKI COUNTY SUBSTATION 161 KV TAP POINT
            PULASKI COUNTY SUBSTATION 161 KV BUS
20PULASK 161
20PULASK69.0 PULASKI COUNTY SUBSTATION 69 KV BUS
20RECTVL69.0 RECTORVILLE SUBSTATION 69 KV BUS
20REDBSH69.0 REDBUSH SUBSTATION 69 KV BUS
20RENAKR 138 RENAKER SUBSTATION 138 KV BUS
20RENAKR69.0 RENAKER SUBSTATION 69 KV BUS
20REVLKU69.0 REVELO KU SUBSTATION 69 KV BUS
20ROGV J69.0 ROGERSVILLE JUNCTION 69 KV
20ROWAN 138 ROWAN CO SUBSTATION 138 KV BUS
20ROWAN 69.0 ROWAN CO SUBSTATION 69 KV BUS
20RSPREJ69.0 RUSSELL SPRINGS JUNCTION 69 KV TAP POINT
20RSPREK69.0 RUSSELL SPRINGS EKPC SUBSTATION 69 KV BUS
20RSPRKU69.0
              RUSSELL SPRINGS KU SUBSTATION 69 KV BUS
              RUSSELL COUNTY SUBSTATION 161 KV BUS
20RUSSCO 161
20RUSSCO69.0 RUSSELL CO SUBSTATION 69 KV BUS
20RUSSEL 161 RUSSELL COUNTY JUNCTION 161 KV TAP POINT
20S FLYD69.0 SOUTH FLOYD SUBSTATION 69 KV BUS
20S FORK69.0 SOUTH FORK SUBSTATION 69 KV BUS
20S OAKH 161 SOUTH OAK HILL SUBSTATION 161 KV BUS
20S PARK 138 STANLEY PARKER SUBSTATION 138 KV BUS
20S PARK69.0 STANLEY PARKER SUBSTATION 69 KV BUS
             SOUTH SPRINGFIELD JUNCTION 69 KV TAP POINT
20S SPRJ69.0
             SALEM JUNCTION 69 KV TAP POINT
20SALEMJ69.0
              SALOMA SUBSTATION 161 KV TAP POINT
20SALOMJ 161
             SALT LICK SUBSTATION 46 KV BUS
20SALT L46.0
             SAND GAP SUBSTATION 69 KV TAP POINT
20SANDGJ69.0
             SAND LICK SUBSTATION 69 KV BUS
20SANDLK69.0
              SOUTH CORBIN SUBSTATION 69 KV BUS
20SCORBN69.0
              SEWELLTON JUNCTION SUBSTATION 69 KV BUS
20SEWLTJ69.0
              SHEPHERDSVILLE JUNCTION 69 KV TAP POINT
20SHEPVJ69.0
              SHEPHERDSVILLE SUBSTATION 69 KV BUS
20SHEPVL69.0
              SHELBY COUNTY CAPACITOR BANK #2 69 KV BUS
20SHLBC269.0
20SHLBYC 161
              SHELBY COUNTY SUBSTATION 161 KV BUS
```

```
20SHLBYC69.0 SHELBY COUNTY SUBSTATION 69 KV BUS
20SHOPVL69.0 SHOPVILLE SUBSTATION 69 KV BUS
20SIDEV 69.0
             SIDEVIEW SUBSTATION 69 KV BUS
20SINAI 69.0 SINAI SUBSTATION 69 KV BUS
20SJESSJ69.0 SOUTH JESSAMINE JUNCTION 69 KV TAP POINT
20SKAGGS 138 SKAGGS SUBSTATION 138 KV BUS
20SKAGGS69.0 SKAGGS SUBSTATION 69 KV BUS
20SLAT 69.0 SLAT SUBSTATION 69 KV BUS
20SMTHVJ69.0 SMITHERSVILLE JUNCTION 69 KV TAP POINT
20SNOW 69.0 SNOW SUBSTATION 69 KV BUS
20SNOWJ 69.0 SNOW JUNCTION 69 KV TAP POINT
20SOMERS69.0 SOMERSET SUBSTATION 69 KV BUS
20SOMRKU69.0 SOMERSET SUBSTATION 69 KV BUS NODE--KU TIES
20SPLK1 22.0 SPURLOCK STATION UNIT 1 22 KV BUS
20SPLK2 22.0 SPURLOCK STATION UNIT 2 22 KV BUS
20SPLK4 18.0 SPURLOCK STATION UNIT 4 18 KV BUS
20SPRKJ169.0 STANLEY PARKER JUNCTION #1 69 KV NODE
20SPRKJ269.0 STANLEY PARKER JUNCTION #2 69 KV NODE
20SPURLK 138 SPURLOCK SUBSTATION 138 KV BUS
20SPURLK 345 SPURLOCK SUBSTATION 345 KV BUS
20SS-61569.0 SOMERSET SOUTH EKPC-KU 69 KV N.O. TIE POINT
20SSHADE 161 SUMMERSHADE SUBSTATION 161 KV BUS
20SSHADE69.0 SUMMERSHADE SUBSTATION 69 KV BUS
20SSHADT 161 SUMMERSHADE TAP 161 KV NODE
20SSPJTH69.0 SUMMERSHADE-PATTON ROAD JUNCTION-TEMPLE HILL 69 KV
20STANTN69.0 STANTON SUBSTATION 69 KV BUS
20STEPHN69.0 STEPHENSBURG SUBSTATION 69 KV BUS
20SUBLET69.0 SUBLETT SUBSTATION 69 KV BUS
20SUBLTJ69.0 SUBLETT JUNCTION 69 KV NODE
20SULPHR69.0 SULPHUR CREEK SUBSTATION 69 KV BUS
20SUMMRV69.0 SUMMERSVILLE SUBSTATION 69 KV BUS
20TAYCTP 161 TAYLOR CO KU SUBSTATION 161 KV TAP POINT
20TAYLOR 161 TAYLOR COUNTY JUNCTION 161 KV TAP POINT
       138 THREE FORKS JUNCTION 138 KV TAP POINT
20TFJ
20TGOOCH69.0 TOMMY GOOCH SUBSTATION 69 KV BUS
20THARP 69.0 THARP SUBSTATION 69 KV BUS
20THELMA69.0 THELMA SUBSTATION 69 KV BUS
20THLNKJ69.0 THREE LINKS JUNCTION SWITCHING SUBSTATION 69 KV
20THLNKS69.0 THREE LINKS SUBSTATION 69 KV BUS
20TMPLHL69.0 TEMPLE HILL SUBSTATION 69 KV BUS
20TRAPP 69.0 TRAPP SUBSTATION 69 KV BUS
20TRKYFJ69.0 TURKEY FOOT JUNCTION 69 KV TAP POINT
20TUNHIL69.0 TUNNEL HILL SUBSTATION 69 KV BUS
20TUNHLJ69.0 TUNNEL HILL JUNCTION 69 KV TAP POINT 20TYNER 161 TYNER SUBSTATION 161 KV BUS 20TYNER 345 TYNER SUBSTATION 345 KV BUS
20TYNER 69.0 TYNER SUBSTATION 69 KV BUS
20UN CTY 138 UNION CITY SUBSTATION 138 KV BUS
20UPTONJ69.0 UPTON JUNCTION 69 KV TAP POINT
20VANARS69.0 VAN ARSDELL SUBSTATION 69 KV BUS
20VOLGA 69.0 VOLGA SUBSTATION 69 KV BUS
20W BARD69.0 WEST BARDSTOWN SUBSTATION 69 KV BUS
20W LIB 69.0 WEST LIBERTY SUBSTATION 69 KV BUS
20W LOND69.0
20W NCVJ69.0
               WEST LONDON SUBSTATION 69 KV BUS
               WEST NICHOLASVILLE JUNCTION 69 KV TAP POINT
20W SOMR69.0
               WEST SOMERSET SUBSTATION 69 KV BUS
```

```
WALNUT GROVE SUBSTATION 69 KV BUS
20WALNGR69.0
20WARNCK69.0 WARNOCK SUBSTATION 69 KV BUS
20WAYNE 69.0 WAYNE COUNTY SUBSTATION 69 KV BUS
20WAYNEJ69.0 WAYNE COUNTY JUNCTION 69 KV NODE
20WBARDJ69.0 WEST BARDSTOWN SWITCHING SUBSTATION 69 KV
20WBER J69.0 WEST BEREA JUNCTION 69 KV NODE
            WEST BEREA SUBSTATION 138 KV BUS
20WBEREA 138
20WBEREA69.0
             WEST BEREA SUBSTATION 69 KV BUS
20WCOLMB69.0
             WEST COLUMBIA SUBSTATION 69 KV BUS
20WCOLMJ69.0
              WEST COLUMBIA JUNCTION 69 KV TAP POINT
              WHITLEY CITY SUBSTATION 69 KV BUS
20WHITLY69.0
              WIBORG SUBSTATION 69 KV TAP POINT
20WIBORJ69.0
20WINDSR69.0 WINDSOR SUBSTATION 69 KV BUS
20WLMSTN69.0 WILLIAMSTOWN SUBSTATION 69 KV BUS
20WMSMTH69.0 WM SMITH SUBSTATION 69 KV BUS
            WOODLAWN SUBSTATION 69 KV
20WOODLN69.0
             WOOSLEY SUBSTATION 69 KV BUS
20WOOSLY69.0
             WYOMING SUBSTATION 69 KV BUS
20WYOMNG69.0
20ZACHAR69.0 ZACHARIAH SUBSTATION 69 KV BUS
20ZILLCJ69.0 ZOLLICOFER JUNCTION 69 KV TAP POINT
20ZULAJ269.0 ZULA JUNCTION #2 69 KV NODE
21WHEATL 345 Enron Wheatland (CIN) High Side 345kV
21WHTLD313.8 Enron Wheatland (CIN) Combustion Turbine #3
21WHTLD413.8 Enron Wheatland (CIN) Combustion Turbine #4
22WHEATL 345 , Enron Wheatland (IPL) High Side 345kV
             Enron Wheatland (IPL) Combustion Turbine #1
22WHTLD113.8
             Enron Wheatland (IPL) Combustion Turbine #2
22WHTLD213.8
              Vermillion 1 13.8kV
23VERM 113.8
              Vermillion 2 13.8kV
23VERM 213.8
23VERM 313.8 Vermillion 3 13.8kV
23VERM 413.8 Vermillion 4 13.8kV
23VERM M 345 Vermillion M 345kV
23VERML113.8 Vermillion Gen 1 13.8kV
23VERML213.8 Vermillion Gen 2 13.8kV
23VERML313.8 Vermillion Gen 3 13.8kV
23VERML413.8 Vermillion Gen 4 13.8kV
23VERML513.8 Vermillion Gen 5 13.8kV
23VERML613.8 Vermillion Gen 6 13.8kV
23VERML713.8
              Vermillion Gen 7 13.8kV
             Vermillion Gen 8 13.8kV
23VERML813.8
             Beverly
24BEVERL 345
25BUCHAN 138 Buchanan
26FOOTHL 345 Foothills
26ZELDA 345
             Zelda
27CORNU 765 Cornu
        138 DUMMY BUS FOR PTI USE ONLY
DUMM
       230 Jewell
JEWEL1
       138 Reactive Metals Tap 138kV
RA TAP
S8-AT-T 345
              Ashtabula No. 8 TR 345/138 kV
             Spruce Q2 138kV bus
SP138-Q2 138
SP138-Q4 138 Spruce Q4 138kV bus
       230
               Spokane230
SPKNE
```


ı

PSC CASE NO. 2005-00207

INFORMATION REQUEST RESPONSE

COMMISSION'S FIRST DATA REQUEST DATED 8/18/05

ITEM 22

RESPONSIBLE PARTY:

MARY JANE WARNER

REQUEST: Refer to the ICF report at page 12. The report mentions that East Kentucky Power has operating procedures that reduce but do not entirely eliminate potential contingency overloads to lines, such as the Salmons / K30 69 kV line. Provide a discussion of how East Kentucky Power will handle those lines and/or other equipment identified in its power flow, short circuit or transient stability studies that are subject to contingency overload conditions.

RESPONSE: As indicated in the Response to Item #16 of this Data Request, EKPC has requested CAI to update the power flow studies with all of EKPC's refinements to its proposed Plan. EKPC and CAI have reviewed the results of these studies. See Exhibit 16-2 for a discussion of the overloads that show up in CAI's latest study. With the exception of one line (Etown-Kargle 69 kV) all overloaded facilities identified in CAI's latest power flow analysis are either pre-existing issues or have been addressed by an increase in ratings. The Etown-Kargle 69 kV line overload will be addressed by a separate ongoing EKPC study.

No potential problems were identified in the short-circuit or transient-stability analyses.

PSC CASE NO. 2005-00207

INFORMATION REQUEST RESPONSE

COMMISSION'S FIRST DATA REQUEST DATED 8/18/05

ITEM 23

RESPONSIBLE PARTY:

MARY JANE WARNER

REQUEST: Refer to the ICF report at page 13. The report states that East Kentucky Power's studies indicated that there could be some transmission element overloads on Cinergy's, Hoosiers Energy's, and TVA's transmission systems as a direct result of its proposed plan. Provide a discussion of any actions that East Kentucky Power has undertaken to inform the affected companies of the potential problems and of any actions that East Kentucky Power will undertake to alleviate these potential problems.

RESPONSE: EKPC disagrees that EKPC/CAI's studies indicate that there could be some transmission overloads on the Cinergy, Hoosier Energy, or TVA systems as a direct result of the proposed Plan. The 1st Addendum Study performed by CAI did show some overloads in these systems with EKPC's proposed Plan. These are facilities that were not identified and addressed in CAI's original January 27, 2005 report, because CAI expanded the monitored area for the 1st Addendum study. Furthermore, this Addendum did not provide results without EKPC's proposed Plan. After reviewing the facilities in question, we conclude that these are pre-existing overloads that are not caused by the EKPC proposed Plan and therefore need not be addressed by EKPC.

PSC CASE NO. 2005-00207

INFORMATION REQUEST RESPONSE

COMMISSION'S FIRST DATA REQUEST DATED 8/18/05

ITEM 24

RESPONSIBLE PARTY:

DAVID EAMES

REQUEST: Refer to the ICF report at page 21. The report mentions that East Kentucky Power's reserve margin for each of its winter peak demand periods from 2008 to 2010 is below 5 percent. Provide a discussion of East Kentucky Power's plans for addressing a reserve margin of this magnitude.

RESPONSE: East Kentucky Power Cooperative designs its system to meet summer peak plus reserves. The summer reserve margin is typically in the range of 12% to 18%. For winter peak, EKPC buys supplemental power and options from the market to increase its reserves to approximately 12%.

PSC CASE NO. 2005-00207

INFORMATION REQUEST RESPONSE

COMMISSION'S FIRST DATA REQUEST DATED 8/18/05

ITEM 25

RESPONSIBLE PARTY:

REQUEST: Provide a copy of the "EPRI-GTC Project Report: Standardized

Methodology for Siting Overhead Electric Transmission Lines."

RESPONSE: The requested report is attached as **Exhibit 25-1**.

Standardized Methodology for Siting Overhead Electric Transmission Lines

CHAPTER 1: INTRODUCTION

This technical report documents Georgia Transmission Corporation's (GTC) methodology for siting overhead electric transmission lines. From the initial project scope provided by GTC's Electric Systems Planning to the determination of a Preferred Route, this methodology was developed to improve GTC siting process including data collection, analysis, identification of the project study area and selection of Preferred Routes for overhead electric transmission lines. As a result of this improved methodology, current Geographic Information System (GIS) technology and statistical evaluation methods were integrated into the siting process to create a powerful analytical tool.

This report is organized in six chapters. Chapter 2 provides a detailed description of the Siting Methodology and the GIS Siting Model. Chapter 3 presents a Siting Case Study using the GIS Siting Model. Chapter 4 describes the project timeline. Chapter 5 presents Future Initiatives and the Conclusions are discussed in Chapter 6.

Need for the Project

In the United States, increasing population and continued growth in demand for electricity require the construction of thousands of miles of new overhead electric transmission lines in the next decade. However, routing these lines has become increasingly difficult as environmental regulations have become more stringent and advocacy groups with divergent priorities have become more active. Electric utilities have been criticized for leaving consumers out of the decision-making process and for relying on the power of eminent domain as a means of land acquisition.

To address these issues, the Electric Power Research Institute (EPRI) and Georgia Transmission Corporation initiated a project in 2002 to improve GTC's current Overhead Electric Transmission Line Siting Methodology. To ensure that all aspects of the siting methodology were addressed in a systematic, impartial manner, a team of internal staff and external consultants was formed. This project team consisted of GIS consultants from the academic community and the private sector, NEPA compliance and legal experts, and staff from GTC and other electric utility companies' environmental, engineering, and land acquisition departments. (See Appendix A: EPRI-GTC Overhead Electric Transmission Line Siting Methodology Project Team)

The objective of this project was to develop an Overhead Electric Transmission Line Siting Methodology that is comprehensive, consistent and defensible. As described in this report, this process enables GTC to standardize and improve each level of its siting methodology. By using GIS technology, the new methodology combines information that is important in reviewing, analyzing and documenting alternative locations for overhead electric transmission lines.

GTC will use the decision and selection criteria developed and tested during this project to carefully and consistently examine all phases of the Overhead Electric Transmission Line Siting Methodology. Using this methodology gives GTC a process that is scientifically rigorous, peer reviewed and tested on multiple overhead electric transmission line projects. As a result, GTC is better prepared to explain, justify and defend its transmission line siting decisions to a broad

Standardized Methodology for Siting Overhead Electric Transmission Lines

range of stakeholders, including: legislative, regulatory, and other public and non-governmental entities.

In addition, this process standardizes GTC's core routing and siting business practice. It provides opportunities for GTC to evaluate a range of alternative routes that represent both corporate values and community concerns. Standardization fosters sound siting decisions by developing decision and selection criteria that are more objective and uniform. The values developed through internal and external stakeholder consensus building can then be applied to these rules. These criteria and values enable the effects of each alternative route to be examined and compared more consistently and objectively. In addition, standardization of the process provides consistency in data acquisition and use. This in turn, maintains a level of accuracy that helps officials identify, analyze and select routes that are more economically acceptable, by avoiding locations that are difficult to permit or mitigate. Thus, under the GTC methodology, the preferred alternative route produced by this process is more defensible because it is based on a rationale that links decisions to consequences.

A frequent criticism of electric utilities is that their siting processes fail to engage the perspectives of diverse communities at a point in the process where public input makes a meaningful difference. In response to this criticism, the project team identified external stakeholder participation as a critical factor in designing the methodology. GTC held five stakeholder meetings to explain the project and to solicit and documents views and values. More than 400 individuals from federal and state agencies, elected officials, citizens' groups, natural resource and land conservation organizations, as well as other electric utility companies were invited to participate in the various workshops for identifying, calibrating, and weighting the route criteria.

Overview of the Siting Methodology and the GIS Siting Model

The EPRI-GTC Overhead Electric Transmission Line Siting Methodology is based on land suitability analysis techniques that were developed by Ian McHarg in the early 1970's. This methodology combines data layers into a comprehensive surface that identifies areas of opportunity and constraint. The McHarg process is the preferred methodology for siting a variety of facilities, including: shopping centers, subdivisions, and linear utility corridors. However, contemporary applications extend the procedures by employing new technologies such as GIS, visual simulation, and Global Positioning Systems (GPS).

The basis of the Overhead Electric Transmission Line Siting Methodology is the application of analytic methods for comparing various decision-making criteria. It relies on GIS technology to provide a modeling environment for structuring all the factors. Because of its power and flexibility, a GIS Siting Model provides the tools and techniques for managing all of the necessary data, producing Macro and Alternative Corridors, generating statistics on Alternatives Routes, and creating graphics depicting each scenario. Within this model, siting features are ranked and data layers are weighted using the Delphi Process and the Analytical Hierarchy Process (AHP) respectively. (See Appendix B: Glossary of Technical Terms)

Because the methodology is implemented using GIS, it must be explicit about what data are to be considered and how the data will be combined. The structured nature of the methodology helps

Standardized Methodology for Siting Overhead Electric Transmission Lines

ensure that it will be consistently applied across projects, locations, and by different siting teams. To be successful and defensible, it is important that all information and assumptions used in choosing a Preferred Route and avoiding less suitable alternatives are available and that the decision is well documented and reproducible. (See Appendix C: Geographic Information Systems Metadata)

A number of factors influence the suitability of a particular location for siting an overhead electric transmission line, including housing density, wetlands and land cover. The project team began by identifying a comprehensive list of factors to be considered in siting overhead electric transmission lines. These factors were reviewed, evaluated, modified and weighted by two groups of stakeholders. External stakeholders included representatives from neighborhood groups, natural resource and land conservation organizations,, and regulatory agencies. A second group of stakeholders was comprised of transmission line routing professionals from Georgia Transmission Corporation, Georgia Power Company (GPC) and MEAG that form the Georgia Integrated Transmission System (ITS). A set of values and weights for the GIS database features and layers was developed during two-day workshops with each stakeholder group.

Standardized Methodology for Siting Overhead Electric Transmission Lines

CHAPTER 2: SITING METHODOLOGY PHASES

The project team identified several major issues in GTC's current siting methodology. These issues included impacts to existing and proposed development, cultural resources, and sensitive biotic resources. To address these issues, the project team identified three important phases in an Overhead Electric Transmission Line Siting Methodology. These phases are

- Phase 1-Macro Corridor Generation
- Phase 2-Alternative Corridor Generation
- Phase 3-Alternative Route Analysis and Evaluation

During Phase 1 land cover data derived from satellite imagery, consisting of 30-meter grid cells, and existing statewide databases i.e. roads, slope, and existing overhead electric transmission lines are used to generate Macro Corridors between two endpoints determined by Electric Systems Planning. Because the Macro Corridors parallel or collocate along existing linear facilities or cross largely undeveloped areas, they are expected to include the most suitable areas for locating Overhead Electric Transmission Lines. The outside limits of the Macro Corridors become the boundaries of the project study area.

In Phase 2 Alternative Corridors are developed within the Macro Corridors. During this phase one-foot aerial photography is acquired and digital orthophotography is produced. More detailed digital data is collected, i.e. wetlands, floodplains and land use/land cover, and entered into the GIS database. This more detailed data is used to identify four distinct types of alternative corridors based on feedback from stakeholder input.

In Phase 3 the siting team identifies a set of Alternative Routes within the Alternative Corridors. Each route is then scored using a standard set of evaluation criteria and compared. The preferred route is selected on the basis of this comparison. As the project progresses from Macro Corridor generation to Alternative Route analysis and evaluation, the methodology uses more detailed data to refine the route selection.

PHASE 1: MACRO CORRIDOR GENERATION

After reviewing GTC's existing study area delineation practices, the project team developed a new technique for determining project boundaries. This technique, termed Macro Corridor Generation, departs from a more traditional siting process where boundaries of the project study area are determined by four major criteria:

- 1. The distance between termini i.e. generator-substation
- 2. The natural and man-made physical barriers i.e. major rivers or interstates
- 3. The administrative barriers i.e., military bases or wilderness areas
- 4. Budgets/schedules for data collection

Macro Corridor generation was chosen to replace this method of study area delineation because of costs and time constraints and a more detailed consideration of feasible routes. The availability of inexpensive and/or free off-the-shelf digital data and sophisticated GIS modeling eliminates unnecessary data collection and data processing.

Standardized Methodology for Siting Overhead Electric Transmission Lines

Development of Macro Corridors is based on satellite imagery derived land cover products and other off-the-shelf digital data. The GIS Siting Model identifies corridors that minimize impacts to the built and the natural environment. In many cases, paralleling existing transmission lines or paralleling existing road rights-of-way can minimize impacts to these resources. The GIS Siting Model eliminates those areas where there is no viable option for building a transmission line. The Macro Corridors define the area where orthophotography and other detailed data collection and analysis will occur in Phase 2.

Macro Corridor Model Testing

The Macro Corridor Phase of the GIS Siting Model was calibrated by testing the Macro Corridor methodology on completed GTC overhead transmission line projects. Twelve projects were selected for the test because they were representative of the landscape characteristics within the State of Georgia. In addition the projects were chosen because they were sited on schedule, within budget, and with minimal impacts to the built and natural environment.

Using satellite imagery and other off the shelf data, suitability grids were generated for each completed project. The suitability grid generated for these tests covered 100 percent of the study area on each project. The boundaries of the Macro Corridors were determined by identifying the percentage of the suitability grid that consistently included all alternative routes that had been generated during the route selection process on the completed projects.

Superimposing the alternative routes from the test projects on the new suitability grid showed that all alternative routes fell with the first five percent of the numeric values of the suitability grid. The suitability grids on new projects will be reviewed in order to validate the numeric value essential to generating consistent Macro Corridor boundaries.

Macro Corridor Data Layers

Project Macro Corridor Generation uses existing digital data layers that allow for the quick identification of the project area. These existing datasets include land cover derived from Landsat satellite imagery, a Digital Elevation Model (DEM), existing roads from the Geographic Data Technologies (GDT) and overhead electric transmission lines from the Georgia Integrated Transmission System (ITS) dataset. The suitability of these features is ranked for cross-country, road parallel, and existing transmission line rebuild/parallel routes.

The source layer for the Macro Corridor GIS dataset is Landsat satellite imagery that was developed by NASA and is maintained by the United States Geological Survey (USGS). The USGS collects current imagery through a satellite system that orbits the earth, collecting electromagnetic energy reflected from the surface. The satellite repeats its data collection every 16-days. These data have a minimum ground resolution of 30 meters and a single image covers approximately 180km2. The scanner collects data from seven different bands of the electromagnetic spectrum including visible light and, infrared and thermal infrared reflectance. (See Figure 2.1: Raw Landsat Imagery) These raw data are typically classified into 15-30 land cover classes based on the Anderson Land Use/Land Cover Classification Level II. (See Figure 2.2:Anderson Level II Landsat Imagery Classification) Although this land cover data are much coarser in resolution than aerial photographs, it is fairly inexpensive to obtain and can be updated regularly at a relatively low cost. A number of national land cover datasets are widely available

Standardized Methodology for Siting Overhead Electric Transmission Lines

at no charge. However, it is important to note that there is a lag time between availability of national land cover products and the dates of the original imagery. It is important to assess whether the land cover data are timely. For Georgia the available datasets include a 1988 land cover may developed by the Georgia Department of Natural Resources, 1992 National Land Cover Dataset (NLCD) developed by the USGS, and a 1998 land cover map developed by USGS GAP Analysis Program. The 2001 NLCD is currently under development.

In addition, each state is being mapped as part of the National Gap Analysis Program (GAP). According to the GAP mission statement, the United States Geological Service (USGS) provides regional, state, and national assessments of the conservation status of native vertebrate species and natural land cover types of the United States. A number of states are beginning to generate their own versions of land use/land cover datasets for planning and monitoring. In Georgia the land use/land cover dataset was developed by the Georgia GAP Program from 1998 Landsat imagery and the Georgia Land Use Trends Project (GLUT) which tracks and analyzes changes in Georgia's land use over the past 25 years. It uses an Anderson Land Use/Land Cover Level II Classification that includes 18 classes. These data are available for a minimal cost from the Georgia GIS Clearinghouse. (See Figure 2.3: Land Use/Land Cover Dataset) The Clearinghouse provides access to GIS resources of Georgia for use by government, academia, and the private sector.

Figure 2.1
Phase 1: Macro Corridor Generation
Raw Landsat Imagery

Figure 2.2
Phase 1: Macro Corridor Generation
Anderson Level II Landsat Imagery Classification

Figure 2.3
Phase 1: Macro Corridor Generation
Land Use/Land Cover Dataset

In addition to these digital datasets, the project team identified areas that were significant barriers to constructing an overhead electric transmission lines and should be avoided during transmission line siting. These "Avoidance Areas" include locations where routes are prohibited either by physical barriers, administrative regulations, or where there would be significant permitting delays. These areas include National Register of Historic Places (NRHP), historic or archeological districts, airports, EPA Superfund sites, military bases, National and State Parks, non-spannable water bodies, United States Forest Service (USFS) Wilderness Areas, National Wildlife Refuges (NWR), mines and quarries, Wild and Scenic Rivers, and Sites of Ritual Importance. Data for most of these Avoidance Areas are currently available in a GIS format.

Macro Corridor Avoidance Areas

The first step in the Macro Corridor development process is to remove all the Avoidance Areas from the Macro Corridor database. Eliminating these Avoidance Areas prohibits the proposed Macro Corridor from crossing places identified by internal and external stakeholders as requiring maximum protection.

Macro Corridor Scenarios and Weights

To locate the Macro Corridors in the most suitable areas, the project team identified three Macro Corridor GIS Siting Model scenarios:

- 1. Rebuilding or paralleling existing transmission lines,
- 2. Paralleling existing road rights-of-way, and,
- 3. Crossing undeveloped land (cross-country)

Standardized Methodology for Siting Overhead Electric Transmission Lines

Next, a weighting system was designed to identify areas where overhead electric transmission line development is most or least suitable. A suitability value is assigned to each GIS feature in the Macro Corridor GIS database. The assigned values range from 1-9 reflecting the suitability of each grid cell. A value of 1 identifies an area of greatest suitability and 9 an area of least suitability. A feature is suitable if a transmission corridor through it is feasible with little impact, for example, open land. A feature is considered unsuitable if a transmission line going through it would have some adverse consequences, such as steep terrain or densely populated areas. Numbers between 1 and 9 are used to represent intermediate degrees of suitability.

Description of Suitability Values

Areas that have High Suitability for an Overhead Electric Transmission Line (1, 2, 3) - These are areas that do not contain known sensitive resources or physical constraints, and therefore should be considered as suitable areas for the development of Macro Corridors. Examples might include open land, pasture, or rebuilding an existing transmission line.

Moderate Suitability for an Overhead Electric Transmission Line (4, 5, 6) - These are areas that contain resources or land uses that are moderately sensitive to disturbance or that present a moderate physical constraint to overhead electric transmission line construction and operation. Resource conflicts or physical constraints in these areas can generally be reduced or avoided using standard mitigation measures. Examples might include primary road crossings.

Low Suitability for an Overhead Electric Transmission Line (7, 8, 9) - These are areas that contain resources or land uses that present a potential for significant impacts that cannot be readily mitigated. Locating a transmission line in these areas would require careful siting or special design measures. Examples might include wetlands or dense urban areas. Note that these areas can be crossed but it is not desirable to do so if other alternatives are available.

Standardized Methodology for Siting Overhead Electric Transmission Lines

LAND COVER				
CLASSIFICATION	SOURCE	X-COUNTRY	ROADS	T/Ls
Open Water	LANDSAT	7	7	7
Secondary Roads	LANDSAT	5	1	5
Other Utility Corridors	LANDSAT	5	5	5
Urban	LANDSAT	9	9	9
Open Land	LANDSAT	1	2	2
Surface Mining/ Rock Outcrop	LANDSAT	9	9	9
Forest	LANDSAT	1	2	2
Agriculture	LANDSAT	1	2	2
Wetland	LANDSAT	9	9	9
Transmission Corridors	ITS*	5	5	1
Primary Roads	GDT**	5	1	5
Interstate	GDT	9	9	9
Slopes > 30 degrees	USGS	9	9	9
Avoidance Features				
Airports	GDT			
Military Facilities	GDT			
NRHP Listed Historic Structures	NPS			
NRHP Listed Historic Districts	NPS			
NRHP Listed Archaeology Sites	NPS			
	NPS			
State and National Park Interiors	NPS			
Non-spannable Water Bodies	USGS			
Wildlife Refuges	GA DNR		,	
USFS Wilderness Areas	GA DNR			
EPA Superfund Site	EPA			
Mines and Quarries	LANDSAT			

^{*} Georgia Integrated Transmission System

Table 2.1
Phase 1: Macro Corridor Generation
Macro Corridor GIS Database Values

Figure 2.4
Phase 1: Macro Corridor Generation
Composite Suitability Surface

Macro Corridor Composite Suitability Surface

Once all the data for the project area are collected, entered into the Macro Corridor GIS database, and numeric values assigned to each feature, a composite suitability surface is created for the entire study area. The purpose of the composite suitability surface is to provide an overview of the study area. Each grid cell in the composite suitability surface is assigned the ranking associated with its underlying land cover type (See Figure 2.4: Composite Suitability Surface). A separate suitability surface is developed for each of the three types of routes:

- 1. Rebuilding or paralleling existing transmission lines
- 2. Paralleling existing road rights-of-way
- 3. Crossing undeveloped land (cross-country)

The Macro Corridor GIS Siting Model uses a "Least Cost Path" (LCP) algorithm to work its way across each of the three composite suitability surfaces. Figure 2.5, the Least Cost Path Calculation Diagram illustrates the operation of the LCP algorithm. If the transmission line must

Standardized Methodology for Siting Overhead Electric Transmission Lines

go from Point A to Point B, the LCP algorithm will find the path across the accumulated surface (represented by suitability values in the grid cells) that minimizes the sum of the values along that route. Any other path will result in a larger suitability sum and therefore be less optimal. For example, the "optimal" route indicated in green has a suitability sum of 21 (3+1+6+1+7+3) compared to a sum of 35 (3+8+20+1+3) for the most direct route. The lower sum indicates higher overall suitability of the green route. (See Appendix D: GIS Siting Model Techniques)

The sum of the LCP calculation is a function of the number of cells crossed (distance) and the values in the individual cells. The path will turn to avoid less preferred or Avoidance Areas (high "cost" cells), but still follow the most direct path possible. Note that, if all the cells have the same score, the resulting path between the two points would be a straight line.

				Start Point
4	5	7	6	
14	20	10		2
8	4	20		9
6	8		12	10
		8	2	4

End Point

Figure 2.5

Phase 1: Macro Corridor Generation

Least Cost Path Calculation Diagram

Numeric Analysis and "Least Cost Path" Areas

Numeric analysis assigns a suitability value from 1-9 to each of the Features in the Macro Corridor GIS database. These values are assigned to each of three composite suitability surfaces based on subsets of the criteria layers: rebuilding or paralleling existing transmission lines, paralleling existing road rights-of-ways, and crossing undeveloped lands. Then, GTC's GIS siting software, Corridor AnalystTM uses standard routing algorithms to identify the areas of "avoidance and opportunities" on each of the three composite suitability surfaces. The software begins at the designated starting point and adds one grid cell at a time by adding an adjacent cell with the lowest suitability score until it reaches the endpoint.

Generating Macro Corridors from the Composite Suitability Surface

After the three Composite Suitability Surfaces are generated, a histogram is developed for each surface. This histogram shows the cumulative value of each of the grid cells within the project

Standardized Methodology for Siting Overhead Electric Transmission Lines

study area. It is used to identify the most suitable areas for each of the three Macro Corridors scenarios: rebuilding or paralleling existing transmission lines, paralleling existing road rights-of-ways, and, crossing undeveloped lands (cross-country). (See Figures 2.6: Existing Transmission Line Macro Corridor, Figure 2.8: Roadside Macro Corridor, and Figure 2.10: Cross Country Macro Corridor) In each scenario, the Macro Corridor boundary is determined by the first statistical break in its histogram. A statistical break occurs when the grid cell value, as shown on the X-axis of the histogram, abruptly decreases.

To validate this method, Macro Corridor boundaries were tested on 12 projects and the statistical break occurred within the first 1 and 5 percent of the grid cell value. In Figures 2.7: Existing Transmission Line Macro Corridor Histogram, Figure 2.9: Roadside Macro Corridor Histogram, and Figure 2.11: Cross Country Macro Corridor Histogram, the X-axis represents "grid cell values" and the Y-axis represents the "number of grid cells" These figures show that a statistical break occurs after two percent on the X-axis, the grid cells values. This two percent area is the area of greatest suitability for Macro Corridor Generation. The variable-width Macro Corridors may have a width of as much as a mile or greater for segments that have substantial length through areas of high suitability, while still allowing enough width in the low suitability areas for the right-of-way requirements of the project.

Figure 2.6
Phase 1: Macro Corridor Generation
Existing Transmission Line Macro Corridor

Figure 2.7
Phase 1: Macro Corridor Generation
Existing Transmission Line Macro Corridor Histogram

Figure 2.8
Phase 1: Macro Corridor Generation
Roadside Macro Corridor

Figure 2.9
Phase 1: Macro Corridor Generation
Roadside Macro Corridor Histogram

Figure 2.10
Phase 1: Macro Corridor Generation
Cross Country Macro Corridor

Figure 2.11
Phase 1: Macro Corridor Generation
Cross-Country Macro Corridor Histogram

Standardized Methodology for Siting Overhead Electric Transmission Lines

Macro Corridor Composite

After the most suitable area of each Macro Corridor is identified, the three corridors are merged into one final Macro Corridor Composite Suitability Surface (See Figure 2.12 – Final Macro Corridor Composite Suitability Surface).

Figure 2.12
Phase 1: Macro Corridor Generation
Final Macro Corridor Composite Suitability Surface
Combined Parallel Existing Transmission Lines Macro Corridor, Parallel Roadside Macro
Corridor, and Cross Country Macro Corridor

Standardized Methodology for Siting Overhead Electric Transmission Lines

PHASE 2: ALTERNATIVE CORRIDOR GENERATION

In Phase 1, the outer limits of the Macro Corridors Composite Suitability Surface were used to define the project study boundaries and to generate a final Macro Corridor Composite Surface. During Phase 2 four Alternative Corridors were generated within the Macro Corridor boundaries. With input from stakeholders, the project team decided to standardize the alternatives for transmission line corridor selection by

- Protecting people places and cultural resources (Built Environment Perspective)
- Protecting water resources, plants and animals (Natural Environment Perspective)
- Minimizing costs and schedule delays (Engineering Requirements Perspective)
- A composite of the Built, Natural and Engineering alternatives (Simple Combined Perspective)

Alternative Corridor Data Collection

Following Macro Corridor Generation, additional data are collected to produce Alternative Corridors within the Macro Corridors. The data are collected and/or derived from several sources. Some data layers are gathered from existing ("off-the-self") data warehouses, while others are created specifically for each project based on aerial photo interpretation. For example, roads, interstates, and railways are purchased from a data provider who ensures updates of these features every year. Some datasets are created and maintained by GTC or by the ITS. However, just as in the Macro Corridor Phase of the EPRI-GTC Methodology, some of the data for Alternative Corridor Generation must be derived. For example, USGS DEMs are acquired as "off-the-self" data, but slope must be derived from the DEMs to be included in the model.

The Land Use/Land Cover Map used in the Macro Corridor Phase is not detailed or accurate enough to define Alternative Corridors. Instead, more detailed datasets are developed for Land Use/Land Cover and Intensive Agriculture from digital orthophotography. This orthophotography is used to "derive" data for the building dataset. Although buildings are identified in the orthophotography, the buildings themselves are not used in Alternative Corridor Phase of the GIS Siting Model. Instead, building density, building proximity, and building buffers are derived from the building dataset using standard functionality commonly available in GIS software. Then, the derived datasets are inserted into the GIS Siting Model.

Alternative Corridor Database

The GIS database for the Alternative Corridor Phase can be thought of on three levels (See Figure 2.13: GIS Siting Model Data Tiers) At the lowest level is Tier 1 which consists of Features that are important in siting a transmission line, i.e. slope, building density or wetlands. The Tier 1 Features contains grid cells that are assigned a value ranging from 1 – 9.and cover the entire study area. Tier 1 Features may include distinct categories such as overhead electric transmission lines, roads, and railroads or may represent numerical ranges, such as the building density.

The second level (Tier 2) similar Features are grouped into Data Layers, i.e. Land Cover contains managed pine, forests, row crops, open land and developed land. At the highest level, Tier 3, the Data Layers are grouped into three Perspectives: Built Environment, Natural Environment, and Engineering Requirements. Each Perspective reflects distinct stakeholder viewpoints on critical siting issues.

Standardized Methodology for Siting Overhead Electric Transmission Lines

LEGEND	AVOIDANCE AREAS	BUILT ENVIRONMENT	NATURAL ENVIRONMENT	ENGINEERING REQUIREMENTS
	NRHP Listed Archaeology Sites	Proximity to Buildings	Floodplain	Linear Infrastructure
AVOIDANCE AREAS	NRHP Listed Archaeology Districts	Background	Background	Rebuild Existing Transmission Lines
TIER 3 - PERSPECTIVES	NRHP Listed Historic Districts	900-1200	100 Year Floodplain	Parallel Existing Transmission Lines
TIER 2 - DATA LAYERS	NRHP Listed Historic Structures	600-900	Streams/Wetlands	Parallel Roads ROW
TIER 1 - FEATURES	NRHP Eligible Historic Districts	300-600	Background	Parallel Gas Pipelines
	EPA Superfund Sites	0-300	Streams < 5cfs	Parallel Railway ROW
	Airports	Eligible NRHP Historic Structures	Non-forested Non-Coastal Wetlands	Background
	Military Facilities	Background	Rivers/Streams > 5cfs	Future GDOT Plans
	Mines & Quarries	900 – 1200	Non-forested Coastal Wetlands	Parallel Interstates ROW
	Buildings + Buffers	600 – 900	Trout Streams (50' Buffer)	Road ROW
	School Parcels (K - 12)	300 – 600	Forested Wetlands + 30' Buffer	Scenic Highways ROW
	Day Care Parcels	0 – 300	Public Lands	Slope
	Church Parcels	Building Density	Background	Slope 0-15%
	Cemetery Parcels	0 - 0.5 Buildings/Acre	WMA - Non-State Owned	Slope 15-30%
	Non-Spannable Water Bodies	0.5 - 0.2 Buildings/Acre	Other Conservation Land	Stope >30%
	Wild & Scenic Rivers	0.2 - 1 Buildings/Acre	USFS	Intensive Agriculture
	Wildlife Refuge	1 - 4 Buildings/Acre	WMA - State Owned	Background
	USFS Wilderness Areas	4 - 25 Buildings/Acre	Land Cover	Fruit Orchards
	National & State Parks	Proposed Development	Open Land, Pastures, Scrub/Shrub	Pecan Orchards
	County & City Parks	Background	Managed Pine Plantations	Center Pivot Agriculture
	Sites of Ritual Importance	Proposed Development	Row Crops and Horticulture	
		Spannable Lakes and Ponds	Developed Land	
		Background	Hardwood/Natural Coniferous Forests	
		Spannable Lakes and Ponds	Wildlife Habitat	
		Land Divisions	Background	
		Edge of field	Species of Concern Habitat	
		Land lots	Natural Areas	
		Background		
		Land Use		
		Undeveloped	1	
		Non-Residential]	
		Residential		

Figure 2 J3

PHASE 2 Alternative Corridor Generation
GIS Siting Model Data Tiers

Standardized Methodology for Siting Overhead Electric Transmission Lines

Avoidance Areas

The first step in the Alternative Corridor Generation Phase is to remove all Avoidance Areas from the Alternative Corridor database. Removing these sensitive areas from consideration protects them during the Alternative Corridor site selection process.

As previously stated in the Macro Corridor Phase, Avoidance Areas are not suitable for locating overhead electric transmission lines. The GIS Siting Model will avoid these areas except in specific situations. One example of such an exception is where a road right-of-way is adjacent to a military base. The existence of the road "trumps" the military base as an Avoidance Area by weighting the roadside edge grid cells as suitable for as a transmission line corridor.

The internal and external stakeholder groups identified the Avoidance Areas in Table 2.2.

Phase 2: Alternative Corridor Generation Avoidance Areas Table 2.2

AVOIDANCE AREAS		
NRHP Archaeology Districts		
NRHP Archaeology Sites		
NRHP Historic Districts		
NRHP Structures		
Eligible NRHP Districts		
EPA Superfund Sites		
Airports		
Military Facilities		
Mines and Quarries		
Building and Buffers		
School Parcels		
Day Care Parcels		
Church Parcels		
Cemetery Parcels		
Non-Spannable Water Bodies		
Wild and Scenic Rivers		
Wildlife Refuges		
USFS Wilderness Areas		
National and State Parks		
County and City Parks		
Sites of Ritual Importance		

Tier 1- Feature Value Calibration

The project team decided to normalize the Tier 1 Features within each Data Layer. Stakeholders were asked to calibrate the Features in a Delphi Process. This collaborative process involves iterative discussion and structured input designed to assist each stakeholder groups in reaching consensus as they calibrated the Feature maps.

Standardized Methodology for Siting Overhead Electric Transmission Lines

The suitability of each Feature was calibrated on a common 1 (most suitable) to 9 (least suitable) scale. Putting Features into a common 1-9 scale allows the Data Layers to be mathematically combined without being distorted by differences in measurement scale. For example, if one foot is measured as 30.48 centimeters rather than 12 inches the larger number would give it more weight in any mathematic operations even thought the physical length is the same. Putting all of the data on the same scale allows the data to be combined into Data Layers and compared. These Feature Calibrations were developed through stakeholder input. (See Appendix D GIS Siting Model Techniques and Appendix E: Phase 2-Alternative Corridor Model: Delphi Feature Calibrations)

For example, a new overhead electric transmission line right-of-way that parallels an existing transmission line was considered more suitable than one that parallels a scenic highway. Therefore, those areas adjacent to the existing transmission line would receive a 1, while those adjacent to the scenic highway would receive a 9. Characterizing suitability for slope for an overhead electric transmission line is another example. Stakeholders assigned a 1 (most suitable) to slopes between 0 and 15 percent, a 5.5 (fairly neutral) to slopes between 15 and 30 percent and a 9 (least suitable) to slopes greater than 30 percent.

Tier 2 - Data Layer Weighting

In the second tier, the Data Layers were weighted as to their relative importance using the Analytical Hierarchy Process (AHP). This collaborative procedure involves pairwise comparison among the set of Feature maps to determine the relative importance of each map layer. The result is the derivation of an importance weight assigned to each map layer. (See Appendix F: Phase 2-Alternative Corridor Model AHP Percentages by Data Layer) Once weighted, the Data Layers are combined to form a group perspective. The stakeholders and the project team developed the Data Layer weights. These weights reflect the importance of each Data Layer in the Overhead Electric Transmission Line Siting.Methodology.

Tier 3 - Perspectives

In Tier 3, individual Data Layers were combined to form three distinct perspectives. These Perspectives were the Built Environment, Natural Environment, and Engineering Requirements. The Built Environment Perspective recognized that in recent years, the most significant opposition to overhead electric transmission lines came from residential neighborhoods and over special places of value to the community (such as proximity to existing and proposed buildings or historic sites). The Natural Environment Perspective sought to minimize the disturbance to ecological resources and natural habitat. The Engineering Requirements Perspective focused on minimizing the cost of construction by seeking the shortest path, while avoiding areas that pose significant construction obstacles. The Simple Combination Perspective places an equal weighting on the Built Environment, Natural Environment and Engineering Requirements Perspectives to form a composite perspective.

Within each Perspective the Data Layers in that group are emphasized. However, Data Layers from other Perspectives must be included, so that the model does not completely ignore those factors. For example, the model must account for the location of houses even when emphasizing the Natural Environment Perspective.

Standardized Methodology for Siting Overhead Electric Transmission Lines

These four different perspectives produce a set of distinct Alternative Corridors that are evaluated and compared prior to developing Alternative Routes. The weighted Data Layers are combined to create a Perspective that reflects the "Optimal Path" for each Alternative Corridor. This "Optimal Path" is the most suitable route because it receives the lowest score that represents the route with the least impact considering that Perspective. Figure 2.14: Delphi Calibrations and Analytical Hierarchy Weightings illustrate the 1 to 9 calibration of the Feature Values established by the Delphi Process. The Layer Weights that were developed using the Analytical Hierarchy Process are show as percentages beside each Feature and Data Layer (See Figure 2.14: Delphi Calibrations and Analytical Hierarchy Weightings.)

EPRI – GTC Project Report

Standardized Methodology for Siting Overhead Electric Transmission Lines

a .
SITING MODEL
AVOIDANCE AREAS
PERSPECTIVES
LAYERS
AHP PERCENTAGES
FEATURES
DELPHI RANKS

	Delphi Calibration	s and .	Analytical Hierarchy We Figure 2.14	ightiı	ngs	
AVOIDANCE AREAS	BUILT ENVIRONME		ENGINEERING		NATURAL ENVIRONMEN	Γ
NRHP-Listed Archaeology Sites	Proximity to Buildings	11.5%	Linear Infrastructure	48.3%	Floodplain	6.2%
NRHP-Listed Archaeology Districts	Background	I	Rebuild Existing Transmission Lines	1	Background	i
NRHP-Listed Historic Districts	900-1200	1.8	Parallel Existing Transmission Lines	1.4	100-Year Floodplain	9
NRHP-Listed Historic Structures	600-900	2.6	Parallel Roads ROW	3.6	Streams/Wetlands	20.9
NRHP-Eligible Historic Districts	300-600	4.2	Parallel Gas Pipelines	4.5	Background	1
EPA Superfund Sites	0-300	9	Parallel Railway ROW	5	Streams < 5cfs+ Regulatory Buffer	5.1
Airports	Eligible NRHP Historic Structur	es 13.9%	Background	5.5	Non-forested Non-Coastal Wetlands	6,1
Military Facilities	Background	1	Future GDOT Plans	7.5	Rivers/Streams > 5cfs+ Regulatory Buffer	7.4
Mines & Quarries	900 - 1200	2.8	Parallel Interstates ROW	8.1	Non-forested Coastal Wetlands	8.4
Buildings + Buffers	600 – 900	3.6	Road ROW	8.4	Trout Streams (50' Buffer)	8.5
School Parcels (K - 12)	300 - 600	5.2	Scenic Highways ROW	9	Forested Wetlands + 30' Buffer	9
Day Care Parcels	0 – 300	9	Slope	9.1%	Public Lands	16.09
Church Parcels	Building Density	37.4%	Slope 0-15%	1	Background	1
Cemetery Parcels	0 - 0.5 Buildings/Acre	1	Slope 15-30%	5.5	WMA - Non-State-Owned	4.8
Non-Spannable Water Bodies	0.5 - 0.2 Buildings/Acre	3	Slope >30%	9	Other Conservation Land	8.3
Wild & Scenic Rivers	0.2 - 1 Buildings/Acre	5	Intensive Agriculture	42.6%	USFS	8
Wildlife Refuge	1 - 4 Buildings/Acre	7	Background	ì	WMA - State-Owned	9
USFS Wilderness Areas	4 - 25 Buildings/Acre	9	Fruit Orchards	5	Land Cover	20.9
National & State Parks	Proposed Development	6.3",	Pecan Orchards	9	Open Land, Pastures, Scrub/Shrub, etc.	1
County & City Parks	Background	1	Center Pivot Agriculture	9	Managed Pine Plantations	2,2
Sites of Ritual Importance	Proposed Development	9			Row Crops and Horticulture	2.2
	Spannable Lakes and Ponds	3.8%			Developed Land	6.5
	Background	1	7		Hardwood/Natural Coniferous Forests	9
	Spannable Lakes and Ponds	9			Wildlife Habitat	36.01
	Land Divisions	8.0%			Background	1
	Edge of Field	1	7		Species of Concern Habitat	3
	Land Lots	7.9	~~ <u> </u>		Natural Areas	9
	Background	9	7			
	Land Use	19.1%				
	Undeveloped	1	7			
	Nonresidential	3	7			
	Residential	9				

EPRI – GTC Project Report

FINAL DRAFT Page 24 8/24/2005

Standardized Methodology for Siting Overhead Electric Transmission Lines

Built Environment Perspective

During the last two decades conflicts have increased over siting new overhead electric transmission lines. Communities reacting against new infrastructure have created some of the conflicts. In other cases, conflicts have resulted from trying to balance environmental impacts and property rights. Regardless of the motivation, citizen opposition can cause significant delays to a project. The purpose of the Built Environment Perspective is to select routes that avoid or minimize impacts to communities.

As shown in Figure 2.16, Built Environment Perspective, Building Locations are a critical component of this perspective. All buildings are buffered and treated as an Avoidance Area. In the Built Environment Layer Group additional protection is provided to building avoidance areas by adding 300 foot proximity zones. As one approaches a building Avoidance Area, each 300-foot proximity zone becomes increasingly less suitable.

The Built Environment Perspective also considers clusters of buildings, such as subdivisions or urban neighborhoods by assigning a higher weight making area less preferable for an overhead electric transmission line. Therefore, it is difficult for the line to go through a dense urban area, even if it skirts individual isolated buildings. Listed National Landmark sites, National Register sites, traditional cultural sites, and eligible historic districts and their properties are treated as "Avoidance Areas" providing maximum protection. In Georgia, a 1,500-foot Adverse Potential Effect (APE) buffer is created around Listed and Eligible NRHP structures.

Stakeholders requested that land use be emphasized in the procedure. The project team created three land use categories in the Land Use Layer: residential, non-residential developed and undeveloped. Residential land is the least preferred and undeveloped land is the most preferred from this perspective. The Proposed Development Layer anticipates future development that cannot be identified on an aerial photograph by including all projects i.e. subdivisions, commercial developments, public facilities, etc. that have been filed with the relevant local government. This information assists the project siting team in avoiding development that has been permitted but not constructed.

One of the most suitable areas for an overhead electric transmission line is along a property line of an undeveloped parcel. Land lot lines, comparable to section lines in the West, and edges of fields identified on aerial imagery are included in the Land Division Layers are preferred to other locations because often they are associated with property boundaries. Spannable Lakes and Ponds are included in the Built Environment Perspective because they are considered amenity features that are less preferred than other areas. Table 2.3 shows the weights associated with each layer.

Taken together these Layers capture the salient features of the Built Environment Perspective. The Built Environment Perspective Alternative Corridors will avoid developed areas whenever possible. Table 2.3 identifies the relative importance applied to the seven map layers forming the Built Environment Perspective. Note that building density has the most influence (37.4%) and is nearly twice as important as land use considerations. As previously discussed, the AHP process involving group collaboration with stakeholders determined the weights. The AHP process is described in Appendix D: GIS Siting Model Techniques)

Standardized Methodology for Siting Overhead Electric Transmission Lines

Table 2.3.

Phase 2: Alternative Corridor Generation
Built Environment Perspective Data Layer Weights

Data Layer	Layer-Weights
Proximity to Buildings	11.5 %
Eligible NRHP Structures	13.9 %
Building Density	37.4 %
Proposed Development	6.3 %
Spannable Lakes and Ponds	3.8 %
Land Divisions	8.0 %
Land Use	19.1 %

Figure 2 16
Phase 2: Alternative Corridor Generation
Built Environment Perspective

Standardized Methodology for Siting Overhead Electric Transmission Lines

Natural Environment Perspective

The Natural Environment Perspective seeks to minimize the effects from overhead electric transmission lines construction and maintenance on sensitive natural resources. Federal and state environmental regulations require the identification and protection of environmentally sensitive areas. At the federal level, environmental laws include wetland protection under the Clean Water Act and protection of endangered animal and plant species under the Endangered Species Act. State regulations protect riparian buffer via the state of Georgia's Erosion and Sedimentation Control Act and the Metropolitan River Protection Act. In addition, the Georgia Department of Natural Resources monitors a number of listed endangered plant and animal species. This list includes state candidate species that require additional concern beyond those listed under federal law. Environmental permits are required from a variety of levels of government including federal, state and local.

Because of their span length and the small footprint for structure placement, overhead electric transmission line construction and maintenance activities generally have minor impacts on the natural environment. However, there are two areas of concern that must be accounted for during data collection: habitat fragmentation and the encroachment on environmentally sensitive areas. These concerns can be avoided by minimizing the amount of the transmission line rights-of-way located in environmentally sensitive undeveloped areas.

This perspective includes five data layers: public lands, streams and wetlands, floodplains, land cover, and, wildlife habitat. Although some Public Lands such as State and National Parks, city and county parks, Wild and Scenic Rivers, United States Forest Service (USFS) Wilderness Areas, and Wildlife Refuges were included as Avoidance Areas, the remainder have been included as part of the Natural Environment Perspective. (See Table 2.4) Inclusion in this perspective ensures that impacts to these areas would be considered in the routing process.

Many agencies have developed data layers that can be used in the planning of overhead electric transmission line routes. The commonly available datasets include: United States Fish and Wildlife's (USFW) National Wetland Inventory (NWI), Federal Emergency Management Agency's (FEMA) floodplain maps and U S Geological Survey's (USGS) National Hydrological Dataset. State Heritage programs often provide some level of information on the distribution of threatened and endangered species within a state. However, this information is limited because few comprehensive surveys have been completed for these plants and animals. It is important to note that although these datasets have been developed with high standards they were produced at a scale much larger than the width of a transmission line and also may not be updated frequently enough to capture changes in the landscape. Therefore, it is always necessary to ground truth the proposed route to be certain nothing was inadvertently overlooked. (See Figure 2.17: Natural Environment Perspective)

To minimize impacts to streams and wetlands during overhead electric transmission line construction and maintenance, it is critical to collect accurate data about their location and characteristics during the routing step. In the Streams and Wetlands data layer, information is collected on streams. Forested wetlands and non-forested coastal wetlands also are included in the Data Layer. Streams with flows greater than 5 cfs create construction and maintenance access problems. In Georgia, trout streams are protected with a 100-foot vegetative buffer (50 feet either

Standardized Methodology for Siting Overhead Electric Transmission Lines

side of the stream). Clearing for an overhead electric transmission line right-of-way in forested wetlands causes adverse impacts to the wetlands by removing the tree canopy. The absence of tree canopy increases water temperatures in the wetland and may contribute to sedimentation. Non- forested coastal wetlands were included in this category because of construction and construction and maintenance access problems.

FEMA Q3 Flood information is used for the Floodplain delineation, because NEPA regulations prohibit steel tower structures being located in a floodplain because they can trap debris and obstruct the flow.

Land Cover data are digitized from orthophotography and includes the following land cover types: managed pine, row crops and horticulture, hardwood mixed and natural forests, open land, and developed lands. Other categories in the Land Cover Data Layer include land use information, such as transportation; utility rights-of-way; low intensity urban; high intensity urban; clear cut/sparse vegetation; quarries/strip mines; rock outcrops; deciduous forest; mixed forest; evergreen forest; golf courses; pasture; row crop; forested wetland; coastal marsh; and non-forested wetland.

In Georgia, the difficulty in acquiring timely and accurate data on threatened and endangered species is a significant problem. For this project, the Threatened and Endangered Habitat Data Layer is used to represent the location of terrestrial endangered species and the Natural Area Data Layer is used as a surrogate for listed plant species. Both of these Data Layers come from the Georgia GAP analysis program. These Data Layers include potential distribution of terrestrial vertebrate and a map of natural vegetation.

Table 2.4.
Phase 2: Alternative Corridor Generation
Natural Environment Perspective Data Layer Weights

Data Layer	Layer-Weights
Public Lands	16.0 %
Streams/ Wetlands	20.9 %
Floodplain	6.2 %
Land Cover	20.9 %
T&E Species Habitat	36.0 %

EPRI – GTC Project Report A Standardized Methodology for Siting Overhead Electric Transmission Lines

Figure 2.17 Phase 2: Alternative Corridor Generation Natural Environment Perspective

Engineering Requirements Perspective

The criteria in this perspective focused on the engineering requirements for routing, constructing, and maintaining overhead electric transmission lines. Engineering stakeholders included engineers and scientists from utilities and state agencies involved in site selection for linear facilities. The group was selected to provide specific knowledge regarding the co-location of power lines with other linear features, including pipelines, roadways and other power lines. Within this perspective there are three data layers: Linear Infrastructure, Slope, and Intensive Agriculture. (See Table 2.5)

If the Data Layers were equally suitable, the engineering solution would be a straight line connecting the two endpoints. Since this rarely occurs, the Engineering Requirements Perspective utilizes the Data Layer suitability information to represent actual conditions. Categories in the Linear Infrastructure Data Layer include rebuilding existing transmission lines or paralleling (co-locating) with other linear infrastructure.

Table 2.5

Phase 2: Alternative Corridor Generation

Engineering Requirements Perspective Data Layer Weights

Data Layer	Layer-Weights
Linear Infrastructure	48.3 %
Slope	9.10 %
Intensive Agriculture	42.6 %

The most cost effective solution with the least impact to the natural and cultural resources is rebuilding an existing transmission line in its existing right-of-way. In the Linear Infrastructure Data Layer, the stakeholders ranked the rebuild alternative as the most suitable alternative. Paralleling (co-locating with) existing linear facilities is primarily driven by construction and maintenance access and cost considerations. The ability to reduce corridor width by paralleling an existing transmission line or road decreases the acreage needed for rights-of-way easements. In addition, the ability to access transmission line right-of-way for construction and maintenance is significantly improved by availability of existing transmission line right-of-way access roads. Paralleling existing linear features places new utility transmission lines in areas where natural resources have previously been disturbed. Additionally, paralleling any existing facilities decreases cost for construction of the new line by minimizing the amount of land required for the new power line corridor thereby reducing the land acquisition costs. Paralleling also reduces the power line cost by minimizing the cost required to clear the corridor needed for the new line. In the Engineering Requirements Perspective, paralleling (co-locating) other linear facilities is ranked as the "second most suitable place to be".

Another engineering consideration is Slope. Slopes less than 15 percent are most suitable for the construction and maintenance of an overhead electric transmission line. Slopes of 16-30 percent pose a moderate constraint by increasing construction costs and having a greater chance of erosion. Slopes greater than 30 percent should be avoided if possible because of the high costs of

A Standardized Methodology for Siting Overhead Electric Transmission Lines

construction and maintenance. Construction costs in these areas are significantly greater due to soil stabilization requirements, equipment constraints, and environmental permits, i.e. crossing permits, mitigation requirements. Some extreme cases may require construction and maintenance work to be performed from the air.

Three types of agriculture that pose significant engineering constraints are included in the Intensive Agriculture Data Layer: center pivot irrigation, pecan orchards, and, fruit orchards. Avoiding these areas provides an opportunity to minimize the cost of affecting expensive orchards and agricultural irrigation facilities. (See Figure 2.18: Engineering Requirements Perspective)

Engineering Requirements Perspective

FINAL DRAFT

Phase 2: Alternative Corridor GIS Data Layers

Figure 219

Least Cost Path Algorithm

As in the Macro Corridor Generation Phase, the LCP procedure is used to identify the most suitable corridor for each of the three perspectives. As discussed in Appendix D, the LCP approach involves three basic steps:

- 1. Deriving a discrete preference surface
- 2. Calculating an accumulated preference surface
- 3. Determining the "Optimal Path" respecting the spatial distribution of the relative preferences for locating an overhead electric transmission line

By far, the most critical step is the first one. This step identifies the relative preference for locating an overhead electric transmission line at any location within a perspective. A series of Features are calibrated on a scale of 1= most suitable through 9= least suitable. The calibrated Features are combined to form Data Layers;. The Data Layers are weight-averaged to reflect the relative importance of the different perspectives.

Figure 2.20
Phase 2: Alternative Corridor Generation

Data Layer Features are calibrated and weighted to derive a map of the relative preference for locating the Alternative Corridors

In practice, three tiers of weights are applied—Tiers 1 for the Feature Calibration, Tier 2 for the Data Layer Weighting within each Group Perspective (Built, Natural, Engineering) and Tier 3 for reflecting the relative importance among the Group Perspectives. A map of areas to absolutely avoid is combined with the weighted criteria map to characterize the relative "goodness" of routing an overhead electric transmission line at every location in the project area, as depicted by the Discrete Preference Surface. (See the right side of Figure 2.20)

Standardized Methodology for Siting Overhead Electric Transmission Lines

The second step in the LCP procedure uses this information to calculate the most suitable corridor for each perspective. The result is an Accumulation Preference Surface that simulates routing of a transmission line from a starting location to all other locations in a project area. The final step identifies the "path of least of resistance" along the accumulated cost surface that minimizes the less preferred areas that are crossed along a route connecting the starting and ending locations. This route identifies the "Optimal Path", as any other path incurring more "less preferred crossing" (sub-optimal). This route is derived by identifying the steepest down hill path from the end point to the bottom of the accumulated cost surface. (See Figure 2.21: Optimal Path)

Figure 2.21
Phase 2: Alternative Corridor Generation
The optimal path from anywhere in a project area is identified by the steepest downhill path over the accumulated cost surface

A corridor of optimality can be generated by identifying the next best route, then the next best and so on. In practice, however, a more efficient procedure is to add the accumulation surfaces from both the starting and endpoints as shown in Figure 2.22: Sum of Accumulated Surfaces. The result is a surface that identifies the total cost of forcing an optimal path through every location in the project area.

Figure 2.22
Phase 2: Alternative Corridor Generation
The sum of accumulated surfaces is used to identify corridors as low points on the total accumulated surface

The series of lowest values on the total accumulation surface (valley bottom) identifies the best route. The valley walls depict increasingly less optimal areas. The red areas in Figure 2.22 identify all locations that are within 5 percent of the "Optimal Path". The green areas indicate 10 percent sub-optimality.

The corridors are useful in delineating boundaries for detailed data collection, such as high-resolution aerial photography and parcel ownership records. The detailed data within the Alternative Corridor is helpful in making slight adjustments in identifying Alternative Routes within each of the perspectives.

Generating Alternative Corridors from the Composite Suitability Surface

As in the Macro Corridor Phase, a histogram is generated and interpreted. In the case of Alternative Corridor Generation, it is run on surfaces for each of the Built Environment, Natural Environment and Engineering Requirements Perspectives. The histogram is used to choose the corridors for each of the three perspectives. The boundaries of these corridors are chosen by the first statistical break in the histogram. Typically, the statistical break occurs between 1 and 5 percent. The Alternative Corridors are shown in Figures 2.23: Built Environment Alternative Corridor, Figure 2.25: Engineering Requirement Alternative Corridor, Figure 2.27: Natural Environment Alternative Corridor and Figure 2.29: Simple Average Alternative Corridor and the histogram illustrate that these breaks occur between 1 and 5 percent in Figure 2.24: Built Environment Alternative Corridor Histogram, Figure 2.26: Engineering Requirement Alternative Corridor Histogram, Figure 2.28: Natural Environment Alternative Corridor Histogram and Figure 2.30: Simple Average Alternative Corridor Histogram.

Figure 2.23
Phase 2: Alternative Corridor Generation
Built Environment Alternative Corridor

Figure 2.24
Phase 2: Alternative Corridor Generation
Built Environment Alternative Corridor Histogram

Figure 2.25
Phase 2: Alternative Corridor Generation
Natural Environment Alternative Corridor

Figure 2.26
Phase 2: Alternative Corridor Generation
Natural Environment Alternative Corridor Histogram

Figure 2.27
Phase 2: Alternative Corridor Generation
Engineering Requirement Alternative Corridor

Figure 2.28
Phase 2: Alternative Corridor Generation
Engineering Requirement Alternative Corridor Histogram

Figure 2.29
Phase 2: Alternative Corridor Generation
Simple Average Alternative Corridor

Figure 2.30
Phase 2: Alternative Corridor Generation
Simple Average Alternative Histogram

Standardized Methodology for Siting Overhead Electric Transmission Lines

Alternative Corridor Weighting and Simple Average Corridor

Alternative Corridors are generated by emphasizing the different Perspectives. (Figure 2.31 – Alternative Corridor Generation Diagram). Emphasis is achieved by combining the three preference surfaces with a weighted average in which one of the Perspectives is considered five times more important than the other two. The testing of weight averaging on various projects demonstrated that the weighting of five times was most effective in emphasizing one Perspective over the others while still retaining some influence from the other two Perspectives.

Figure 2.31
Phase 2: Alternative Corridor Generation Diagram
A conceptual diagram showing how Alternative Corridors are generated
by systematically emphasizing different Perspectives

The result is three different corridors as shown in Figure 2.31. In this figure, the Built Environment corridor was generated by weighting the Built Perspective Data Layers five times more than the Natural and Engineering Perspectives. In a similar manner, Engineering and Natural emphasized alternatives are over-weighted to identify distinct solutions that respond to each Perspective.

In addition to the corridors generated for each Perspective, a simple average preference surface is used to establish a consistent base line for all three Perspectives. The Alternative Corridors are combined to identify the optimal "decision space" for locating an overhead electric transmission line considering the different siting perspectives. A proposed route venturing outside the combined Alternative Corridors is sub-optimal from all three Perspectives and would need to be justified by extenuating factors not included in the model's set of map criteria.

PHASE 3: ALTERNATIVE ROUTE ANALYSIS AND EVALUATION

Alternative Route Generation

In Phase 2, the LCP algorithm was run to generate Alternative Corridors for each of the three perspectives emphasizing: Built, Natural, Engineering factors and an overall Simple Combination of all three. This algorithm generates a 15-foot wide "Optimal Path" (the size of one grid cell) in each Corridor. (See Figure 2.32 Alternative Routes within Alternative Corridors) As with the other two phases, additional detailed data are collected for areas within the Alternative Corridors. Property lines are identified and building centroids that were digitized during the Phase 2 Alternative Corridor are classified by types: occupied house, commercial building, or industrial building. These additional data are entered into the GIS Siting Model. These data aid the project team in refining the "Optimal Path" within each of the Alternative Corridors. By waiting until these Alternative Corridors have been identified before collecting this very detailed data, the total time and cost to the project are greatly reduced.

Figure 2.32
Phase 3: Alternative Route Generation
Alternative Routes within Alternative Corridors"

Right-of-Way Considerations

Because the width of the "Optimal Path" is 15 feet, it is too narrow for meaningful analysis of the Alternative Routes by the current GIS Siting Model. To increase the "Optimal Path" from 15 feet (width of one grid cell) to the right-of-way width for the voltage of the project, additional grid cells must be added to each side of the "Optimal Path'. This refinement creates an "Optimal Route". For example, the width of the "Optimal Route" for a 500 kV (kilovolt) transmission line would require a width of 12 grid cells to form a 180-foot right-of-way.

Map Overlay Analysis

The route evaluation process is designed to provide necessary information to a team of siting

professionals. Staff from the areas of engineering, land acquisition and environmental evaluates the advantages and disadvantages of the Alternative Routes and selection of the Preferred Route. Their evaluation includes an extensive set of siting criteria as well as summaries of Data Layers (preferences layers) using map overlay analysis, spreadsheet processing, interactive geo-queries, and other quantitative and qualitative metrics. Variations between the Built Environment Perspective, Natural Environment Perspective, and Engineering Requirements Perspective (preference surface alternatives) can be illustrated to the project siting team by using this Map Overlap Analysis. (See Figure 2.33: Map Overlay Analysis)

Figure 2.33

Phase 3: Alternative Route Generation

Map Overlay Analysis is used to summarize the relative siting preference along

an Alternative Route.

In analyzing a composite Alternative Route, the GIS Siting Model isolates the evaluation criteria for all Data Layers. The results can be reported in a variety of formats: as a map display, as an inspection of "drill-down data", as a graphic or as summary statistics. For example, the hypothetical route in Figure 2.33 shows that only a small stretch at the top of the route crosses a "least preferred" area (red), while the majority of the route crosses moderate to most preferred areas (green).

In a similar manner, a siting team member can "click" at any location along the route and pop-up a table listing preference conditions on any of the other active map layers. This interactive geo-query feature facilitates rapid retrieval of information supporting siting team discussions. In addition to graphical display, interactive geo-query of evaluation criteria, metrics summarizing individual segments and/or Alternative Routes are available as a spreadsheet table. Table 2.6, Tabular Summary of Alternative Routes, shows an example spreadsheet of summary information (rows) for several Alternative Routes (columns). Corridor AnalystTM software is used to summarize the evaluation metrics in terms of counts for the siting team discussion of relative lengths, and acres of easement.

Tabular Summary of Alternative Routes **Evaluation Metrics** FOR ALL ROUTES Route A Route B Route C Route D Route E Route F ✓ Relocated Residences Refocated Residences (within 75' Conidor ✓ Proximity to Residences Proximity to Residences (2007) √ Proposed Developments Proposed Development: Kernstierd Proximity to Commercial Buildings (3007) Kernstierd ✓ Proximity to Commercial Buildings Recording to Industrial Buildings (200) Recording ✓ Proximity to Commercial Buildings chool, DayCare, Church, Cemeters, Park Parcels (# ✓ School, Daycare. Church. Marmaticad FIRMP Liste O'Elegable Struces (Districts Cemetery, Park Parcels 17 (1500 from edge of PAV) 15 Normaked 19 Natural √NRHP Listed/Eligible 0 NamalForests (Acres) 107 Structures/Districts Stream/River Crossings ✓Natural Forests Mermaliced Floodplain Areas (Acres) ✓ Stream/River Crossings ✓ Wetland Areas 27 Morablish 25 Engineering Length [MZ+s] Marinalized MArs of Rebuild with Ensting TR √ Floodplain Areas √ Total Length Mercurificani Miles of Co-location with Existing Tit. √Miles of Rebuild Marashred Mites of Co-location with Flowis √Miles of Co-location Manushood Number of Parcels ✓ Number of Parcels Recoefficed Total Project Costs √ Total Project Costs

Table 2.6

Phase 3: Alternative Route Generation

Spreadsheet statistics summarizing evaluation criteria for Alternative Routes

Metrics, such as the number of relocated residences or length of the route passing through natural forests, are used to guide discussions comparing the advantages and disadvantages of the Alternative Routes. These discussions help organize and focus the siting team's review, as well as provide ample opportunity for free exchange of expert experience and opinion.

Qualitative Expert Judgment

The project team uses evaluation metrics are normalized and assigned weights developed using

Standardized Methodology for Siting Overhead Electric Transmission Lines

AHP to derive a relative score for each Alternative Route. (See Appendix G: Phase 2-Alternative Corridor Weighting: AHP Pairwise Comparison Questions) The scores are combined for the three Perspectives (Built Environment Perspective, Natural Environment Perspective and Engineering Requirements Perspective,) and then totaled for an overall score. The numerical score provides an objective reference for comparing Alternative Routes and stimulates discussion of their relative merits.

The left side of Table 2.7, Evaluating Alternative Routes, shows the translation of the "raw" evaluation metrics to a normalized and weighted score. In this example the sub-criteria for each Perspective are assigned relative weights. For example, the Built Environment Perspective consideration of Relocated Residences is considered much more important (40 percent) than the consideration of close Proximity to Industrial Buildings (2 percent). The three perspectives are equally weighted (33 percent) in this example, but could reflect preferential treatment if a routing situation was thought to be more sensitive to the Built Environment Perspective, Natural Environment Perspective, or to the Engineering Requirement Perspective.

Table 2.7

Phase 3: Alternative Route Generation

Expert judgment is applied to the top three routes to identify their relative rankings

Selecting the Preferred Route

The final step in the evaluation process applies expert judgment for ranking the top Alternative Routes. (See Appendix H: Phase 3: Preferred Route Weighting AHP Pairwise Comparison Questions) Each of the siting team members ranks the top scoring routes based on their expert experience and opinion of several important considerations-visual concerns, community concerns, schedule delay risk, special permit issues, construction and maintenance accessibility, and environmental justice. (See Appendix I: Environmental Justice) The considerations are assigned relative importance weights (5, 25, 30, 30, and 10 percent respectively) and the